Supplemental Material for the paper untitled "A Robust Method for Strong Rolling Shutter Effects Correction Using Lines with Automatic Feature Selection"

Yizhen Lao Omar Ait-Aider
Institut Pascal, Universit Clermont Auvergne/CNRS
4 Avenue Blaise Pascal, 63178 Aubire Cedex, FRANCE
lyz91822@gmail.com omar.ait-aider@uca.fr

Abstract

In this supplementary material the reader may find: (i) more details about derivations of $3 D$ straight line projection with different rolling shutter (RS) models (section. 7). (ii) Details of practical 4-curves linear solution (R4C) (section. 2). (iii) Besides, we give proofs of degeneracy analysis (section. 3). (iv) We also provide correction results of a RS video by our method.

1. Details of Parametrization of 3D Line Projection

In order to parameterize 3D straight line projection with different RS models, we first denote components inside intrinsic matrix \mathbf{K} of a calibrated RS camera as:

$$
\left(\mathbf{K}^{\top}\right)^{-1}=\left|\begin{array}{ccc}
f_{x} & 0 & 0 \tag{1}\\
0 & f_{y} & 0 \\
c_{x} & c_{y} & 1
\end{array}\right|
$$

Thus, a 2D projected line for global shutter (GS) model in Eq. (6) in the paper can be further expressed as:

$$
\begin{equation*}
f_{x} m_{c i p}^{x} u+f_{y} m_{c i p}^{y} v+c_{x} m_{c i p}^{x}+c_{y} m_{c i p}^{y}+m_{c i p}^{z} \tag{2}
\end{equation*}
$$

where we let the direction vector of straight line as $\mathbf{m}_{c i p}=\left(\begin{array}{lll}m_{c i p}^{x} & m_{c i p}^{y} & m_{c i p}^{z}\end{array}\right)^{\top}$.

1.1. Deriving 3D Line Projection with Uniform RS Model

The uniform RS model considers both translational and rotational motion during image acquisition. We denote the linear velocity as \mathbf{d} and the angular velocity as $\boldsymbol{\omega}$, and the translation between the v-th row camera frame and world coordinate frame as $\mathbf{t}_{c}^{w}+\mathbf{d} v$ while rotation is $\left(\mathbf{I}+[\boldsymbol{\omega}]_{\times} v\right) \mathbf{R}_{w}^{c}$. \mathbf{t}_{c}^{w} and \mathbf{R}_{w}^{c} are translation and rotation matrix for the first row which we set as reference row. Thus, the 3D straight line expression in Eq. (4) in the paper for GS case will change according to uniform RS camera ego-motion:

$$
\begin{array}{r}
\mathbf{R}_{c}=\left(\left(\mathbf{I}+[\boldsymbol{\omega}]_{\times} v\right) \mathbf{R}_{w}^{c}\right)^{\top} \mathbf{R}_{w} \\
\mathbf{t}_{c}=\left(t_{x}, t_{y}, t_{z}\right)^{\top}=\left(\mathbf{R}_{w}\right)^{\top}\left(\mathbf{t}_{c}^{w}+\mathbf{d} v\right) \tag{3}\\
\left(a_{c}, b_{c}\right)=\left(a_{w}-t_{x}, b_{w}-t_{y}\right)
\end{array}
$$

In order to make it easier to derived curve expression, we let:

$$
\begin{array}{r}
\mathbf{R}_{c}=\left(\left(\mathbf{I}+[\boldsymbol{\omega}]_{\times} v\right) \mathbf{R}_{w}^{c}\right)^{\top} \mathbf{R}_{w}=\mathbf{R}_{c}^{w} \mathbf{R}_{w}+\mathbf{R}_{c}^{w}[\boldsymbol{\omega}]_{\times} \mathbf{R}_{w} v=\mathbf{A}+\mathbf{B} v \\
a_{c}=a_{w}-\mathbf{R}_{w}^{\top} \mathbf{t}_{c}^{w}-\mathbf{R}_{w 1}^{\top} \mathbf{d} v=C^{a}-D^{a} \tag{4}\\
b_{c}=b_{w}-\mathbf{R}_{w 2}^{\top} \mathbf{t}_{c}^{w}-\mathbf{R}_{w 2}^{\top} \mathbf{d} v=C^{b}-D^{b}
\end{array}
$$

where, \mathbf{A} and \mathbf{B} are two 3×3 matrices, C^{a}, C^{b}, D^{a} and D^{b} are scalar variables. Thus, the direction vector of straight line $\mathbf{m}_{c i p}$ are now also determined by row-index v :

$$
\begin{align*}
& m_{c i p}^{x}=\left(C^{a} A_{12}-C^{b} A_{11}\right)+\left(C^{a} B_{12}-D^{a} A_{12}-C^{b} B_{11}+D^{b} A_{11}\right) v+\left(D^{b} B_{11}-D^{a} B_{12}\right) v^{2} \\
& m_{c i p}^{y}=\left(C^{a} A_{22}-C^{b} A_{21}\right)+\left(C^{a} B_{22}-D^{a} A_{22}-C^{b} B_{21}+D^{b} A_{21}\right) v+\left(D^{b} B_{21}-D^{a} B_{22}\right) v^{2} \tag{5}\\
& m_{c i p}^{z}=\left(C^{a} A_{32}-C^{b} A_{31}\right)+\left(C^{a} B_{32}-D^{a} A_{32}-C^{b} B_{31}+D^{b} A_{31}\right) v+\left(D^{b} B_{31}-D^{a} B_{32}\right) v^{2}
\end{align*}
$$

We rewrite Eq. 55 using auxiliary variables $L_{0}^{x}, L_{1}^{x}, L_{2}^{x}, L_{0}^{y}, L_{1}^{y}, L_{2}^{y}, L_{0}^{z}, L_{1}^{z}$ and L_{2}^{z} in oder to do further derivations:

$$
\begin{align*}
& m_{c i p}^{x}=L_{0}^{x}+L_{1}^{x} v+L_{2}^{x} v^{2} \\
& m_{c i p}^{y}=L_{0}^{y}+L_{1}^{y} v+L_{2}^{y} v^{2} \tag{6}\\
& m_{c i p}^{z}=L_{0}^{z}+L_{1}^{z} v+L_{2}^{z} v^{2}
\end{align*}
$$

Now we substitute $\mathbf{m}_{\mathbf{c i p}}$ in Eq. (2) by Eq. (5). We can obtain expression of a curve instead of a straight line:

$$
\begin{align*}
\text { Unif curve }(u, v) & =\left(f_{y} L_{2}^{y}\right) v^{3}+\left(f_{x} L_{2}^{x}\right) v^{2} u+\left(f_{y} L_{1}^{y}+c_{x} L_{2}^{x}+c_{y} L_{2}^{y}+L_{2}^{z}\right) v^{2} \\
& +\left(f_{x} L_{1}^{x}\right) v u+\left(f_{y} L_{0}^{y}+c_{x} L_{1}^{x}+c_{y} L_{1}^{y}+L_{1}^{z}\right) v+\left(f_{x} L_{0}^{x}\right) u+\left(c_{x} L_{0}^{x}+c_{y} L_{0}^{y}+L_{0}^{z}\right) \tag{7}\\
& ={ }^{U n i f} F_{1} v^{3}+{ }^{U n i f} F_{2} v^{2} u+{ }^{U n i f} F_{3} v^{2}+{ }^{U n i f} F_{4} v u+{ }^{U n i f} F_{5} v+{ }^{U n i f} F_{6} u+{ }^{U n i f} F_{7}=0
\end{align*}
$$

There are seven coefficients in Eq. (7): Unif F_{1}, Unif F_{2}, Unif F_{3}, Unif $F_{4},{ }^{U n i f} F_{5},{ }^{U n i f} F_{6}$ and ${ }^{U n i f} F_{7}$.
As with the previous models, when \mathbf{d} and angular velocity $\boldsymbol{\omega}$ equal to zero, Eq. 77 will collapse into Eq. (2) as a GS case.

1.2. Deriving 3D Line Projection with Linear RS Model

Distinctively, if we assume that the angular velocity $\boldsymbol{\omega}$ is equal to zero. Eq. (4) becomes:

$$
\begin{array}{r}
\mathbf{R}_{c}=\mathbf{R}_{c}^{w} \mathbf{R}_{\mathbf{w}} \\
\mathbf{t}_{c}=\left(t_{x}, t_{y}, t_{z}\right)^{\top}=\left(\mathbf{R}_{w}\right)^{\top}\left(\mathbf{t}_{c}^{w}+\mathbf{d} v\right) \tag{8}\\
\left(a_{c}, b_{c}\right)=\left(a_{w}-t_{x}, b_{w}-t_{y}\right)
\end{array}
$$

Thus, the straight line director vector $\mathbf{m}_{\text {cip }}$ can be expressed as follows:

$$
\begin{align*}
& m_{c i p}^{x}=\left(\left(a_{w}-\mathbf{R}_{w 1}^{\top} \mathbf{t}_{c}^{w}\right) R_{c 12}-\left(b_{w}-\mathbf{R}_{w 2}^{\top} \mathbf{t}_{c}^{w}\right) R_{c 11}\right)+\left(\mathbf{R}_{w 2}^{\top} R_{c 22}-\mathbf{R}_{w 1}^{\top} R_{c 12}\right) \mathbf{d} v \\
& m_{c i p}^{y}=\left(\left(a_{w}-\mathbf{R}_{w 1}^{\top} \mathbf{t}_{c}^{w}\right) R_{c 22}-\left(b_{w}-\mathbf{R}_{w 2}^{\top} \mathbf{t}_{c}^{w}\right) R_{c 21}\right)+\left(\mathbf{R}_{w 2}^{\top} R_{c 21}-\mathbf{R}_{w 1}^{\top} R_{c 22}\right) \mathbf{d} v \tag{9}\\
& m_{c i p}^{z}=\left(\left(a_{w}-\mathbf{R}_{w 1}^{\top} \mathbf{t}_{c}^{w}\right) R_{c 32}-\left(b_{w}-\mathbf{R}_{w 2}^{\top} \mathbf{t}_{c}^{w}\right) R_{c 31}\right)+\left(\mathbf{R}_{w 2}^{\top} R_{c 31}-\mathbf{R}_{w 1}^{\top} R_{c 32}\right) \mathbf{d} v
\end{align*}
$$

We denote Eq. 9 using auxiliary variables $L_{0}^{x}, L_{1}^{x}, L_{0}^{y}, L_{1}^{y}, L_{0}^{z}$ and L_{1}^{z} in order to do further derivations:

$$
\begin{align*}
& m_{c i p}^{x}=L_{0}^{x}+L_{1}^{x} v \\
& m_{c i p}^{y}=L_{0}^{y}+L_{1}^{y} v \tag{10}\\
& m_{c i p}^{z}=L_{0}^{z}+L_{1}^{z} v
\end{align*}
$$

Now we substitute $\mathbf{m}_{\text {cip }}$ in Eq. 27 by Eq. (9). Curves expression in Eq. 77) becomes a hyperbolic curve:

$$
\begin{align*}
\operatorname{Lin} \text { curve }(u, v) & =\left(f_{y} L_{1}^{y}\right) v^{2}+\left(f_{x} L_{1}^{x}\right) v u+\left(f_{y} L_{0}^{y}+c_{x} L_{1}^{x}+c_{y} L_{1}^{y}+L_{1}^{z}\right) v+\left(f_{x} L_{0}^{x}\right) u+\left(f_{x} L_{0}^{x}+c_{y} L_{0}^{y}+L_{0}^{z}\right) \\
& ={ }^{\text {Lin }} F_{1} v^{2}+{ }^{\text {Lin }} F_{2} v u+{ }^{\text {Lin }} F_{3} v+{ }^{\text {Lin }} F_{4} u+{ }^{\text {Lin }} F_{5}=0 \tag{11}
\end{align*}
$$

There are five coefficients in Eq. 11): ${ }^{\text {Lin }} F_{1},{ }^{\text {Lin }} F_{2},{ }^{\text {Lin }} F_{3},{ }^{\text {Lin }} F_{4}$ and ${ }^{\text {Lin }} F_{5}$.

1.3. Deriving 3D Line Projection with Rotate-only RS Model

To obtain rotate-only model, we set linear velocity d to zero. Thus, Eq. (4) becomes:

$$
\begin{array}{r}
\mathbf{R}_{c}=\left(\left(\mathbf{I}+[\boldsymbol{\omega}]_{\times} v\right) \mathbf{R}_{w}^{c}\right)^{\top} \mathbf{R}_{w} \\
\mathbf{t}_{c}=\left(t_{x}, t_{y}, t_{z}\right)^{\top}=\left(\mathbf{R}_{w}\right)^{\top} \mathbf{t}_{c}^{w} \tag{12}\\
\left(a_{c}, b_{c}\right)=\left(a_{w}-t_{x}, b_{w}-t_{y}\right)
\end{array}
$$

Similarity, we assume:

$$
\begin{align*}
\mathbf{R}_{c} \mid & =\left(\left(\mathbf{I}+[\boldsymbol{\omega}]_{\times} v\right) \mathbf{R}_{w}^{c}\right)^{\top} \mathbf{R}_{w} \\
& =\mathbf{R}_{c}^{w} \mathbf{R}_{w}+\mathbf{R}_{c}^{w}[\boldsymbol{\omega}]_{\times} \mathbf{R}_{w} v=\mathbf{A}+\mathbf{B} v \tag{13}
\end{align*}
$$

where, \mathbf{A} and \mathbf{B} are two 3×3 matrices. Thus, the direction vector of straight line $\mathbf{m}_{\mathbf{c i p}}$ is now also determined by row-index v :

$$
\begin{align*}
& m_{c i p}^{x}=\left(a_{c} A_{12}-b_{c} A_{11}\right)+\left(a_{c} B_{12}-b_{c} B_{11}\right) v \\
& m_{c i p}^{y}=\left(a_{c} A_{22}-b_{c} A_{21}\right)+\left(a_{c} B_{22}-b_{c} B_{21}\right) v \tag{14}\\
& m_{c i p}^{z}=\left(a_{c} A_{32}-b_{c} A_{31}\right)+\left(a_{c} B_{22}-b_{c} B_{31}\right) v
\end{align*}
$$

We denote Eq. 14) using auxiliary variables $L_{0}^{x}, L_{1}^{x}, L_{0}^{y}, L_{1}^{y}, L_{0}^{z}$ and L_{1}^{z} in order to do further derivations:

$$
\begin{align*}
& m_{c i p}^{x}=L_{0}^{x}+L_{1}^{x} v \\
& m_{c i p}^{y}=L_{0}^{y}+L_{1}^{y} v \tag{15}\\
& m_{c i p}^{z}=L_{0}^{z}+L_{1}^{z} v
\end{align*}
$$

Now we substitute $\mathbf{m}_{\mathbf{c i p}}$ in Eq. (2) by Eq. (14). Curves expression in Eq. (7) becomes another hyperbolic curve:

$$
\left.\begin{array}{rl}
R o t & \text { curve }(u, v)
\end{array}=\left(f_{y} L_{1}^{y}\right) v^{2}+\left(f_{x} L_{1}^{x}\right) v u+\left(f_{y} L_{0}^{y}+c_{x} L_{1}^{x}+c_{y} L_{1}^{y}+L_{1}^{z}\right) v+\left(f_{x} L_{0}^{x}\right) u+\left(f_{x} L_{0}^{x}+c_{y} L_{0}^{y}+L_{0}^{z}\right)\right) .{ }^{R o t} F_{1} v^{2}+{ }^{R o t} F_{2} v u+{ }^{R o t} F_{3} v+{ }^{R o t} F_{4} u+{ }^{R o t} F_{5}=0
$$

There are five coefficients in Eq. 16: ${ }^{R o t} F_{1},{ }^{R o t} F_{2},{ }^{R o t} F_{3},{ }^{R o t} F_{4}$ and ${ }^{R o t} F_{5}$.

2. Details of the linear 4-curves Angular Velocity Extraction

2.1. Proof. Transformation from Eq. (9) to Eq. (10) in the paper.

We first number equations inside Eq. (10) in the paper and express them using intrinsic parameters defined in Eq. (1).

$$
\begin{array}{r}
F_{1}=f_{y}\left(s_{1} \omega_{3}-s_{3} \omega_{1}\right) \\
F_{2}=f_{x}\left(s_{3} \omega_{2}-s_{2} \omega_{3}\right) \\
F_{3}=f_{y} s_{2}+c_{x}\left(s_{3} \omega_{2}-s_{2} \omega_{3}\right)+c_{y}\left(s_{1} \omega_{3}-s_{3} \omega_{1}\right)+\left(s_{2} \omega_{1}-s_{1} \omega_{2}\right) \\
F_{4}=f_{x} s_{1} \\
F_{5}=f_{x} s_{1}+c_{y} s_{2}+s_{3} \tag{21}
\end{array}
$$

In order to extract angular velocity from 17 to 21, we can first substitute structure unknowns s_{1}, s_{2} and s_{3} just by angular velocity parameters ω_{1}, ω_{2} and ω_{3}. Thus, we define four auxiliary variables a, b, c and d :

$$
\begin{equation*}
a=F_{5}-F_{4}=c_{y} s_{2}+s_{3} \tag{22}
\end{equation*}
$$

Then we substitute s_{2} using 18 and 22, we have:

$$
\begin{equation*}
b=\frac{F_{2}}{f_{x}}=s_{3} \omega_{2}-\frac{a-s_{3}}{c_{y}} \omega_{3} \tag{23}
\end{equation*}
$$

Later, we further substitute s_{1} using 17 and 20, we have:

$$
\begin{equation*}
c=\frac{F_{1}}{f_{y}}=\frac{F_{4}}{f_{x}} \omega_{3}-s_{3} \omega_{1} \tag{24}
\end{equation*}
$$

Besides, we still need to substitute s_{1}, s_{2} and ω_{3} using 17/18 and 19 .

$$
\begin{equation*}
d=F_{3}-\frac{c_{y}}{f_{y}} F_{1}-\frac{c_{x}}{f_{x}} F_{2}=\left(f_{y}+\omega_{1}\right) \frac{a-s_{3}}{c_{y}}-\frac{F_{4}}{f_{x}} \omega_{2} \tag{25}
\end{equation*}
$$

Finally, we substitute ω_{3} and s_{3} in 23,24 and 25 by ω_{1} and ω_{2}, then we get:

$$
\begin{equation*}
c_{y}\left[\left(d-\frac{a f_{y}}{c_{y}}+\frac{a}{c_{y}}\right) \omega_{1}-\frac{f_{y} F_{4}}{f_{x}} \omega_{2}+\frac{F_{4}}{f_{x}} \omega_{1} \omega_{2}+\frac{a}{c_{y}} \omega_{1}^{2}+\left(\frac{a f_{y}}{c_{y}}-f_{y} d\right)\right]\left[\omega_{2}-\frac{a f_{x}}{F_{4} c_{y}} c\right]=0 \tag{26}
\end{equation*}
$$

Eq. (26) can be re-written as a cubic bi-varibales polynomial from shown in Eq. (14):

$$
\begin{equation*}
C_{1} \omega_{1}^{3}+C_{2} \omega_{2}^{2} \omega_{1}+C_{3} \omega_{1}^{2}+C_{4} \omega_{2}^{2}+C_{5} \omega_{1} \omega_{2}+C_{6} \omega_{1}+C_{7} \omega 2+C_{8}=0 \tag{27}
\end{equation*}
$$

Where coefficients C_{1} to C_{8} are:

$$
\begin{gather*}
C_{1}=-\frac{a^{2} f_{x} f_{y}}{F_{4} c_{y}} \tag{28}\\
C_{2}=-\frac{c_{y} F_{4}}{f_{x}} \tag{29}\\
C_{3}=\left(-\frac{a f_{x}}{F_{4}}\right)\left(d-\frac{a f_{y}}{c_{y}}+\frac{a}{c_{y}}\right)+\frac{f_{x} a c}{F_{4} c_{y}}+a^{2}-b-\frac{f_{x}}{F_{4} c_{y}} a c \tag{30}\\
C_{4}=-\frac{f_{y} F_{4} c_{y}}{f_{x}}+\frac{F_{4}^{2} c_{y}^{2}}{f_{x}^{2}} \tag{3}\\
C_{6}=d c_{y}-a f_{x}+a+f_{y} a+c+2 a F_{4} c_{y} \tag{32}\\
C_{4} \tag{33}\\
F_{y} \tag{3}\\
\left.f_{y} d-a \frac{f_{y}}{c_{y}}\right)+\frac{f_{x} c}{F_{4}}\left(d-a \frac{f_{y}}{c_{y}}+\frac{a}{c_{y}}\right)+2 a d c_{y}-2 a^{2} f_{y}\left(b+\frac{f_{x}}{F_{4} c_{y}} a c\right) \tag{3}\\
C_{7}=\left(a f_{y}-f_{y} c_{y} d\right)-f_{y} c+2 \frac{d F_{4} c_{y}^{2}}{f_{x}}-2 \frac{a c_{y} F_{4} f_{y}}{f_{x}} \\
F_{4} \\
\left(\frac{a f_{y}}{c_{y}}-f_{y} d\right)+c_{y}^{2} d^{2}-2 a c_{y} f_{y} d+a^{2} f_{y}^{2}-f_{y}^{2}\left(b+\frac{f_{x}}{F_{4} c_{y}} a c\right)
\end{gather*}
$$

2.2. Proof. Transformation from Eq. (10) to Eq. (11) in the paper.

We first re-write the four curves in the form of Eq. (27):

$$
\begin{align*}
& C_{1}^{1} \omega_{1}^{3}+C_{2}^{1} \omega_{2}^{2} \omega_{1}+C_{3}^{1} \omega_{1}{ }^{2}+C_{4}^{1} \omega_{2}^{2}+C_{5}^{1} \omega_{1} \omega_{2}+C_{6}^{1} \omega_{1}+C_{7}^{1} \omega 2+C_{8}^{1}=0 \tag{36}\\
& C_{1}^{2} \omega_{1}^{3}+C_{2}^{2} \omega_{2}^{2} \omega_{1}+C_{3}^{2} \omega_{1}^{2}+C_{4}^{2} \omega_{2}^{2}+C_{5}^{2} \omega_{1} \omega_{2}+C_{6}^{2} \omega_{1}+C_{7}^{2} \omega 2+C_{8}^{2}=0 \tag{3}\\
& C_{1}^{3} \omega_{1}^{3}+C_{2}^{3} \omega_{2}^{2} \omega_{1}+C_{3}^{3} \omega_{1}{ }^{2}+C_{4}^{3} \omega_{2}^{2}+C_{5}^{3} \omega_{1} \omega_{2}+C_{6}^{3} \omega_{1}+C_{7}^{3} \omega 2+C_{8}^{3}=0 \tag{38}\\
& C_{1}^{4} \omega_{1}^{3}+C_{2}^{4} \omega_{2}^{2}{ }^{2} \omega_{1}+C_{3}^{4} \omega_{1}^{2}+C_{4}^{4} \omega_{2}^{2}+C_{5}^{4} \omega_{1} \omega_{2}+C_{6}^{4} \omega_{1}+C_{7}^{4} \omega 2+C_{8}^{4}=0 \tag{3}
\end{align*}
$$

Now, we defined three auxiliary variables:

$$
\begin{array}{r}
r^{1}=\frac{C_{1}^{1}}{C_{1}^{2}} \\
r^{2}=\frac{C_{1}^{1}}{C_{1}^{3}} \\
r^{3}=\frac{C_{3}^{1}-r^{1} C_{3}^{2}}{C_{3}^{3}-r^{2} C_{3}^{2}} \tag{42}
\end{array}
$$

Then we can substitute ω_{2} by ω_{1} by using Eq. (36, (37), (38) and auxiliary variables above.

$$
\begin{equation*}
E q \cdot(36)-r^{1} E q \cdot 37-r^{3}\left(E q \cdot 38-r^{2} E q \cdot 37\right) \tag{43}
\end{equation*}
$$

Then we get:

$$
\begin{equation*}
T_{1}^{1} \omega_{1}^{2}+T_{2}^{1} \omega_{2}^{2}+T_{3}^{1} \omega_{1} \omega_{2}+T_{4}^{1} \omega_{1}+T_{5}^{1} \omega_{2}+T_{6}^{1}=0 \tag{44}
\end{equation*}
$$

Coefficients T_{1}^{1} to T_{5}^{1} are calculated by C_{1}^{1} to C_{8}^{3}. Then we use Eq. 39 to replace Eq. 38 and under transformation (43). We obtain:

$$
\begin{equation*}
T_{1}^{2} \omega_{1}^{2}+T_{2}^{2} \omega_{2}^{2}+T_{3}^{2} \omega_{1} \omega_{2}+T_{4}^{2} \omega_{1}+T_{5}^{2} \omega_{2}+T_{6}^{2}=0 \tag{45}
\end{equation*}
$$

2.3. Proof. Transformation from Eq. (11) to Eq. (12) in the paper.

At this stage, ω_{2} can be substituted by ω_{1} using Eq. 44) and Eq. 45):

$$
\begin{equation*}
\left(H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right)\left(\omega_{1}^{4}, \omega_{1}^{3}, \omega_{1}^{2}, \omega_{1}, 1\right)^{\top}=0 \tag{46}
\end{equation*}
$$

where coefficients H_{1} to H_{5} are calculated T_{1}^{1} to T_{5}^{2}. In such case, two bi-variables cubic polynomial equation turn into a quartic polynomial equation with one unknown. Finally, Eq. (47) can be solved directly with four geometric possible solutions, however, only one is correct. Therefore, we choose the most geometrically consistent value.

3. Degeneracy Analysis

We present derivation details of the three degenerate cases of the linear 4-curves solution.

3.1. Proof. Degenerate case 1

We assume a 3D line located within y-z-plan and a camera under an arbitrary ego-rotational along x-axis during acquisition. This leads to the following configuration:

$$
\left\{\begin{align*}
\left.\mathfrak{L}=<\mathbf{R}_{\mathbf{w}},\left(a_{w}, b_{w}\right)\right)> & =\left\{<\mathfrak{R}\left(\forall x_{1}, 0,0\right),\left(0, \forall x_{2}\right)>\quad \mid x_{1}, x_{2} \in \mathbb{R}\right\} \tag{47}\\
\boldsymbol{\omega} & =\{[\forall x, 0,0] \quad \mid x \in \mathbb{R}\}
\end{align*}\right.
$$

where $\mathfrak{R}(a, b, c)$ is rotation matrix generated by rotation angles a, b and c along x-y-z axis respectively. Substituting in Eq. (47) into Eq. $13-16$ with $\mathbf{R}_{C}^{W}=\mathbf{I}$ and $\mathbf{t}_{C}^{W}=[0 ; 0 ; 0]$ Eq. 17]-21] becomes:

$$
\left\{\begin{array}{c}
F_{1}=0 \tag{48}\\
F_{2}=0 \\
F_{3}=f_{y} L_{0}^{y}=0 \\
F_{4}=L_{0}^{x} \\
F_{5}=c_{x} L_{0}^{x}+L_{0}^{z}
\end{array}\right.
$$

The equation above indicates that if an arbitrary 3D line within y-z-plane is observed by a RS camera under ego-rotational along x -axis, no matter magnitude of speed, all of these lines will be projected as the same 2 D line $u=c_{x} / f_{x}$. In other words, a projected curve can be explained by multiple configurations $\left.\left\{<\mathbf{R}_{\mathbf{w}},\left(a_{w}, b_{w}\right)\right)>, \boldsymbol{\omega}\right\}$. Thus, configuration in Eq. (47) is a degenerate one.

3.2. Proof. Degenerate case 2

This time, we assume a 3D line located within x -z-plan and camera under arbitrary ego-rotation along y-axis during acquisition. This leads to:

$$
\left\{\begin{align*}
\left.\mathfrak{L}=<\mathbf{R}_{\mathbf{w}},\left(a_{w}, b_{w}\right)\right)> & =\left\{<\mathfrak{R}\left(0, \forall x_{1}, 0\right),\left(\forall x_{2}, 0\right)>\quad \mid x_{1}, x_{2} \in \mathbb{R}\right\} \tag{49}\\
\boldsymbol{\omega} & =\{[0, \forall x, 0] \quad \mid x \in \mathbb{R}\}
\end{align*}\right.
$$

Thus, Eq. $\sqrt{177-(21)}$ becomes:

$$
\left\{\begin{array}{c}
F_{1}=0 \tag{50}\\
F_{2}=0 \\
F_{3}=f_{y} L_{0}^{y} \\
F_{4}=f_{x} L_{0}^{x}=0 \\
F_{5}=c_{y} L_{0}^{y}+L_{0}^{z}
\end{array}\right.
$$

The equation above indicates that if an arbitrary 3D line within y-z-plane is observed by a RS camera under ego-rotation along y -axis, no matter magnitude of speed, all of these lines will be projected as the 2D lines $v=c_{y} / f_{x}$. Therefore, the configuration in Eq. 497 is also a degenerate one.

3.3. Proof. Degenerate case 3

We assume a 3D line parallel to x -axis and camera under arbitrary ego-rotational along x -axis during acquisition. It leads to:

$$
\left\{\begin{align*}
\left.\mathfrak{L}=<\mathbf{R}_{\mathbf{w}},\left(a_{w}, b_{w}\right)\right)> & =\left\{<\mathfrak{R}(0, \pi / 2,0),\left(\forall x_{1}, \forall x_{2}\right)>\quad \mid x_{1}, x_{2} \in \mathbb{R}\right\} \tag{51}\\
\boldsymbol{\omega} & =\{[\forall x, 0,0] \quad \mid x \in \mathbb{R}\}
\end{align*}\right.
$$

Thus, Eq. $\sqrt{177-(21)}$ will change to:

$$
\left\{\begin{array}{c}
F_{1}=-f_{y} b_{w} \omega_{1} \tag{52}\\
F_{2}=0 \\
F_{3}=f_{y} L_{0}^{y}-c_{y} b_{w} \omega_{1}+a_{w} \omega_{1} \\
F_{4} 0 \\
F_{5}=c_{y} L_{0}^{y}+L_{0}^{z}
\end{array}\right.
$$

Equation above indicates that if an arbitrary 3D line parallel to x-axis is observed by a RS camera under ego-rotational along x-axis, no matter magnitude of speed, all of these lines will be projected as horizontal 2D lines in image as $F_{1} v^{2}+$ $F_{3} v+F_{5}=0$. Indeed, each of these lines can be explained by the coupling of a_{w}, b_{w} and $\boldsymbol{\omega}$. Therefore, the configuration in Eq. (51) is also a degenerate one.

