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Abstract

In this supplementary material the reader may find: (i) more details about derivations of 3D straight line projection with
different rolling shutter (RS) models (section. 1). (ii) Details of practical 4-curves linear solution (R4C) (section. 2). (iii)
Besides, we give proofs of degeneracy analysis (section. 3). (iv) We also provide correction results of a RS video by our
method.

1. Details of Parametrization of 3D Line Projection
In order to parameterize 3D straight line projection with different RS models, we first denote components inside intrinsic

matrix K of a calibrated RS camera as:

(K>)−1 =

∣∣∣∣∣∣
fx 0 0
0 fy 0
cx cy 1

∣∣∣∣∣∣ (1)

Thus, a 2D projected line for global shutter (GS) model in Eq. (6) in the paper can be further expressed as:

fxm
x
cipu+ fym

y
cipv + cxm

x
cip + cym

y
cip +mz

cip (2)

where we let the direction vector of straight line as mcip =
(
mx

cip my
cip mz

cip

)>
.

1.1. Deriving 3D Line Projection with Uniform RS Model

The uniform RS model considers both translational and rotational motion during image acquisition. We denote the linear
velocity as d and the angular velocity as ω, and the translation between the v-th row camera frame and world coordinate
frame as twc + dv while rotation is (I + [ω]×v)R

c
w. twc and Rc

w are translation and rotation matrix for the first row which
we set as reference row. Thus, the 3D straight line expression in Eq. (4) in the paper for GS case will change according to
uniform RS camera ego-motion:

Rc = ((I+ [ω]×v)R
c
w)
>Rw

tc = (tx, ty, tz)
> = (Rw)

>(twc + dv)

(ac, bc) = (aw − tx, bw − ty)
(3)

In order to make it easier to derived curve expression, we let:

Rc = ((I+ [ω]×v)R
c
w)
>Rw = Rw

c Rw +Rw
c [ω]×Rwv = A+Bv

ac = aw −R>w1t
w
c −R>w1dv = Ca −Da

bc = bw −R>w2t
w
c −R>w2dv = Cb −Db

(4)
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where, A and B are two 3 × 3 matrices, Ca, Cb, Da and Db are scalar variables. Thus, the direction vector of straight line
mcip are now also determined by row-index v:

mx
cip = (CaA12 − CbA11) + (CaB12 −DaA12 − CbB11 +DbA11)v + (DbB11 −DaB12)v

2

my
cip = (CaA22 − CbA21) + (CaB22 −DaA22 − CbB21 +DbA21)v + (DbB21 −DaB22)v

2

mz
cip = (CaA32 − CbA31) + (CaB32 −DaA32 − CbB31 +DbA31)v + (DbB31 −DaB32)v

2

(5)

We rewrite Eq. (5) using auxiliary variables Lx
0 , Lx

1 , Lx
2 , Ly

0 , Ly
1 , Ly

2 , Lz
0, Lz

1 and Lz
2 in oder to do further derivations:

mx
cip = Lx

0 + Lx
1v + Lx

2v
2

my
cip = Ly

0 + Ly
1v + Ly

2v
2

mz
cip = Lz

0 + Lz
1v + Lz

2v
2

(6)

Now we substitute mcip in Eq. (2) by Eq. (5). We can obtain expression of a curve instead of a straight line:

Unifcurve(u, v) = (fyL
y
2)v

3 + (fxL
x
2)v

2u+ (fyL
y
1 + cxL

x
2 + cyL

y
2 + Lz

2)v
2

+ (fxL
x
1)vu+ (fyL

y
0 + cxL

x
1 + cyL

y
1 + Lz

1)v + (fxL
x
0)u+ (cxL

x
0 + cyL

y
0 + Lz

0)

=Unif F1v
3 +Unif F2v

2u+Unif F3v
2 +Unif F4vu+Unif F5v +

Unif F6u+Unif F7 = 0

(7)

There are seven coefficients in Eq. (7): UnifF1, UnifF2, UnifF3, UnifF4, UnifF5, UnifF6 and UnifF7.
As with the previous models, when d and angular velocity ω equal to zero, Eq. (7) will collapse into Eq. (2) as a GS case.

1.2. Deriving 3D Line Projection with Linear RS Model

Distinctively, if we assume that the angular velocity ω is equal to zero. Eq. (4) becomes:

Rc = Rw
c Rw

tc = (tx, ty, tz)
> = (Rw)

>(twc + dv)

(ac, bc) = (aw − tx, bw − ty)
(8)

Thus, the straight line director vector mcip can be expressed as follows:

mx
cip = ((aw −R>w1t

w
c )Rc12 − (bw −R>w2t

w
c )Rc11) + (R>w2Rc22 −R>w1Rc12)dv

my
cip = ((aw −R>w1t

w
c )Rc22 − (bw −R>w2t

w
c )Rc21) + (R>w2Rc21 −R>w1Rc22)dv

mz
cip = ((aw −R>w1t

w
c )Rc32 − (bw −R>w2t

w
c )Rc31) + (R>w2Rc31 −R>w1Rc32)dv

(9)

We denote Eq. (9) using auxiliary variables Lx
0 , Lx

1 , Ly
0 , Ly

1 , Lz
0 and Lz

1 in order to do further derivations:

mx
cip = Lx

0 + Lx
1v

my
cip = Ly

0 + Ly
1v

mz
cip = Lz

0 + Lz
1v

(10)

Now we substitute mcip in Eq. (2) by Eq. (9). Curves expression in Eq. (7) becomes a hyperbolic curve:

Lincurve(u, v) = (fyL
y
1)v

2 + (fxL
x
1)vu+ (fyL

y
0 + cxL

x
1 + cyL

y
1 + Lz

1)v + (fxL
x
0)u+ (fxL

x
0 + cyL

y
0 + Lz

0)

=Lin F1v
2 +Lin F2vu+Lin F3v +

Lin F4u+Lin F5 = 0
(11)

There are five coefficients in Eq. (11): LinF1, LinF2, LinF3, LinF4 and LinF5.
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1.3. Deriving 3D Line Projection with Rotate-only RS Model

To obtain rotate-only model, we set linear velocity d to zero. Thus, Eq. (4) becomes:

Rc = ((I+ [ω]×v)R
c
w)
>Rw

tc = (tx, ty, tz)
> = (Rw)

>twc

(ac, bc) = (aw − tx, bw − ty)
(12)

Similarity, we assume:
Rc| = ((I+ [ω]×v)R

c
w)
>Rw

= Rw
c Rw +Rw

c [ω]×Rwv = A+Bv
(13)

where, A and B are two 3 × 3 matrices. Thus, the direction vector of straight line mcip is now also determined by
row-index v:

mx
cip = (acA12 − bcA11) + (acB12 − bcB11)v

my
cip = (acA22 − bcA21) + (acB22 − bcB21)v

mz
cip = (acA32 − bcA31) + (acB22 − bcB31)v

(14)

We denote Eq. (14) using auxiliary variables Lx
0 , Lx

1 , Ly
0 , Ly

1 , Lz
0 and Lz

1 in order to do further derivations:

mx
cip = Lx

0 + Lx
1v

my
cip = Ly

0 + Ly
1v

mz
cip = Lz

0 + Lz
1v

(15)

Now we substitute mcip in Eq. (2) by Eq. (14). Curves expression in Eq. (7) becomes another hyperbolic curve:

Rotcurve(u, v) = (fyL
y
1)v

2 + (fxL
x
1)vu+ (fyL

y
0 + cxL

x
1 + cyL

y
1 + Lz

1)v + (fxL
x
0)u+ (fxL

x
0 + cyL

y
0 + Lz

0)

=Rot F1v
2 +Rot F2vu+Rot F3v +

Rot F4u+Rot F5 = 0
(16)

There are five coefficients in Eq. (16): RotF1, RotF2, RotF3, RotF4 and RotF5.

2. Details of the linear 4-curves Angular Velocity Extraction
2.1. Proof. Transformation from Eq. (9) to Eq. (10) in the paper.

We first number equations inside Eq. (10) in the paper and express them using intrinsic parameters defined in Eq. (1).

F1 = fy(s1ω3 − s3ω1) (17)
F2 = fx(s3ω2 − s2ω3) (18)

F3 = fys2 + cx(s3ω2 − s2ω3) + cy(s1ω3 − s3ω1) + (s2ω1 − s1ω2) (19)
F4 = fxs1 (20)

F5 = fxs1 + cys2 + s3 (21)

In order to extract angular velocity from 17 to 21, we can first substitute structure unknowns s1, s2 and s3 just by angular
velocity parameters ω1, ω2 and ω3. Thus, we define four auxiliary variables a, b, c and d:

a = F5 − F4 = cys2 + s3 (22)

Then we substitute s2 using 18 and 22, we have:

b =
F2

fx
= s3ω2 −

a− s3
cy

ω3 (23)
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Later, we further substitute s1 using 17 and 20, we have:

c =
F1

fy
=
F4

fx
ω3 − s3ω1 (24)

Besides, we still need to substitute s1, s2 and ω3 using 17,18 and 19:

d = F3 −
cy
fy
F1 −

cx
fx
F2 = (fy + ω1)

a− s3
cy

− F4

fx
ω2 (25)

Finally, we substitute ω3 and s3 in 23, 24 and 25 by ω1 and ω2, then we get:

cy[(d−
afy
cy

+
a

cy
)ω1 −

fyF4

fx
ω2 +

F4

fx
ω1ω2 +

a

cy
ω2
1 + (

afy
cy
− fyd)][ω2 −

afx
F4cy

c] = 0 (26)

Eq. (26) can be re-written as a cubic bi-varibales polynomial from shown in Eq. (14):

C1ω1
3 + C2ω2

2ω1 + C3ω1
2 + C4ω2

2 + C5ω1ω2 + C6ω1 + C7ω2 + C8 = 0 (27)

Where coefficients C1 to C8 are:

C1 = −a
2fxfy
F4cy

(28)

C2 = −cyF4

fx
(29)

C3 = (−afx
F4

)(d− afy
cy

+
a

cy
) +

fxac

F4cy
+ a2 − b− fx

F4cy
ac (30)

C4 = −fyF4cy
fx

+
F 2
4 c

2
y

f2x
(31)

C5 = dcy − afx + a+ fya+ c+ 2aF4cy (32)

C6 =
afy
F4

(fyd− a
fy
cy

) +
fxc

F4
(d− afy

cy
+

a

cy
) + 2adcy − 2a2fy(b+

fx
F4cy

ac) (33)

C7 = (afy − fycyd)− fyc+ 2
dF4c

2
y

fx
− 2

acyF4fy
fx

(34)

C8 =
cfx
F4

(
afy
cy
− fyd) + c2yd

2 − 2acyfyd+ a2f2y − f2y (b+
fx
F4cy

ac) (35)

2.2. Proof. Transformation from Eq. (10) to Eq. (11) in the paper.

We first re-write the four curves in the form of Eq. (27):

C1
1ω1

3 + C1
2ω2

2ω1 + C1
3ω1

2 + C1
4ω2

2 + C1
5ω1ω2 + C1

6ω1 + C1
7ω2 + C1

8 = 0 (36)

C2
1ω1

3 + C2
2ω2

2ω1 + C2
3ω1

2 + C2
4ω2

2 + C2
5ω1ω2 + C2

6ω1 + C2
7ω2 + C2

8 = 0 (37)

C3
1ω1

3 + C3
2ω2

2ω1 + C3
3ω1

2 + C3
4ω2

2 + C3
5ω1ω2 + C3

6ω1 + C3
7ω2 + C3

8 = 0 (38)

C4
1ω1

3 + C4
2ω2

2ω1 + C4
3ω1

2 + C4
4ω2

2 + C4
5ω1ω2 + C4

6ω1 + C4
7ω2 + C4

8 = 0 (39)

Now, we defined three auxiliary variables:
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r1 =
C1

1

C2
1

(40)

r2 =
C1

1

C3
1

(41)

r3 =
C1

3 − r1C2
3

C3
3 − r2C2

3

(42)

Then we can substitute ω2 by ω1 by using Eq. (36), (37), (38) and auxiliary variables above.

Eq.(36)− r1Eq.(37)− r3(Eq.(38)− r2Eq.(37)) (43)

Then we get:

T 1
1 ω

2
1 + T 1

2 ω
2
2 + T 1

3 ω1ω2 + T 1
4 ω1 + T 1

5 ω2 + T 1
6 = 0 (44)

Coefficients T 1
1 to T 1

5 are calculated by C1
1 to C3

8 . Then we use Eq. (39) to replace Eq. (38) and under transformation
(43). We obtain:

T 2
1 ω

2
1 + T 2

2 ω
2
2 + T 2

3 ω1ω2 + T 2
4 ω1 + T 2

5 ω2 + T 2
6 = 0 (45)

2.3. Proof. Transformation from Eq. (11) to Eq. (12) in the paper.

At this stage, ω2 can be substituted by ω1 using Eq. (44) and Eq. (45):

(H1, H2, H3, H4, H5)(ω
4
1 , ω

3
1 , ω

2
1 , ω1, 1)

> = 0 (46)

where coefficients H1 to H5 are calculated T 1
1 to T 2

5 . In such case, two bi-variables cubic polynomial equation turn into
a quartic polynomial equation with one unknown. Finally, Eq. (47) can be solved directly with four geometric possible
solutions, however, only one is correct. Therefore, we choose the most geometrically consistent value.

3. Degeneracy Analysis
We present derivation details of the three degenerate cases of the linear 4-curves solution.

3.1. Proof. Degenerate case 1

We assume a 3D line located within y-z-plan and a camera under an arbitrary ego-rotational along x-axis during acquisi-
tion. This leads to the following configuration:{

L =< Rw, (aw, bw)) >= {< R(∀x1, 0, 0), (0,∀x2) > |x1, x2 ∈ R}
ω = {[∀x, 0, 0] |x ∈ R} (47)

where R(a, b, c) is rotation matrix generated by rotation angles a, b and c along x-y-z axis respectively. Substituting in Eq.
(47) into Eq. (13)-(16) with RW

C = I and tWC = [0; 0; 0] Eq. (17)-(21) becomes:
F1 = 0
F2 = 0

F3 = fyL
y
0 = 0

F4 = Lx
0

F5 = cxL
x
0 + Lz

0

(48)

The equation above indicates that if an arbitrary 3D line within y-z-plane is observed by a RS camera under ego-rotational
along x-axis, no matter magnitude of speed, all of these lines will be projected as the same 2D line u = cx/fx. In other
words, a projected curve can be explained by multiple configurations {< Rw, (aw, bw)) >,ω}. Thus, configuration in Eq.
(47) is a degenerate one.
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3.2. Proof. Degenerate case 2

This time, we assume a 3D line located within x-z-plan and camera under arbitrary ego-rotation along y-axis during
acquisition. This leads to:{

L =< Rw, (aw, bw)) >= {< R(0,∀x1, 0), (∀x2, 0) > |x1, x2 ∈ R}
ω = {[0,∀x, 0] |x ∈ R} (49)

Thus, Eq. (17)-(21) becomes: 
F1 = 0
F2 = 0

F3 = fyL
y
0

F4 = fxL
x
0 = 0

F5 = cyL
y
0 + Lz

0

(50)

The equation above indicates that if an arbitrary 3D line within y-z-plane is observed by a RS camera under ego-rotation
along y-axis, no matter magnitude of speed, all of these lines will be projected as the 2D lines v = cy/fx. Therefore, the
configuration in Eq. (49) is also a degenerate one.

3.3. Proof. Degenerate case 3

We assume a 3D line parallel to x-axis and camera under arbitrary ego-rotational along x-axis during acquisition. It leads
to: {

L =< Rw, (aw, bw)) >= {< R(0, π/2, 0), (∀x1,∀x2) > |x1, x2 ∈ R}
ω = {[∀x, 0, 0] |x ∈ R} (51)

Thus, Eq. (17)-(21) will change to: 
F1 = −fybwω1

F2 = 0
F3 = fyL

y
0 − cybwω1 + awω1

F4 = 0
F5 = cyL

y
0 + Lz

0

(52)

Equation above indicates that if an arbitrary 3D line parallel to x-axis is observed by a RS camera under ego-rotational
along x-axis, no matter magnitude of speed, all of these lines will be projected as horizontal 2D lines in image as F1v

2 +
F3v+F5 = 0. Indeed, each of these lines can be explained by the coupling of aw, bw and ω. Therefore, the configuration in
Eq.(51) is also a degenerate one.
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