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Abstract

We propose an original approach to absolute pose and structure-from-motion (SfM) which handles rolling shutter (RS) effects.
Unlike most existing methods which either augment global shutter projection with velocity parameters or impose continuous
time and motion through pose interpolation, we use local differential constraints. These are established by drawing analogies
with non-rigid 3D vision techniques, namely shape-from-template and non-rigid SM (NRSfM). The proposed idea is to
interpret the images of a rigid surface acquired by a moving RS camera as those of a virtually deformed surface taken by
a GS camera. These virtually deformed surfaces are first recovered by relaxing the RS constraint using SfT or NRSfM.
Then we upgrade the virtually deformed surface to the actual rigid structure and compute the camera pose and ego-motion
by reintroducing the RS constraint. This uses a new 3D-3D registration procedure that minimizes a cost function based on
the Euclidean 3D point distance. This is more stable and physically meaningful than the reprojection error or the algebraic
distance used in previous work. Experimental results obtained with synthetic and real data show that the proposed methods
outperform existing ones in terms of accuracy and stability, even in the known critical configurations.

Keywords Rolling shutter - Absolute pose - Structure-from-motion - Non-rigid - Shape-from-template

1 Introduction
1.1 Context

Many modern CMOS cameras are equipped with rolling
shutter (RS) sensors, which are known to be fast, low cost
and low power consuming compared to global shutter (GS)
sensors (El Gamal and Eltoukhy 2005). However, in RS sen-
sors the pixel rows (or columns) are exposed sequentially,
e.g. commonly from the top to the bottom of the image.
Therefore, the images captured by moving RS cameras are
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subject to distortions such as wobble and skew, which defeat
the classical GS geometric model that is usually assumed
in 3D computer vision. In the past decade, many methods
have been designed to fit RS camera problems, such as RS
correction (Rengarajan et al. 2016; Purkait et al. 2017; Ren-
garajan et al. 2017; Lao and Ait-Aider 2018), absolute pose
(AP) (Ait-Aider et al. 2006, 2007; Ait-Aider and Berry 2009;
Saurer et al. 2015), 3D reconstruction from stereo rigs (Ait-
Aider and Berry 2009; Saurer et al. 2016, 2013), bundle
adjustment for structure-from-motion (SfM) (Hedborg et al.
2011, 2012), relative pose estimation (Dai et al. 2016), dense
matching (Kim et al. 2016; Saurer et al. 2016) and degener-
acy understanding (Albl et al. 2016b; Ito and Okatani 2017).
In this paper, we bring a new approach to AP and SfM, two
classical and fundamental problems in 3D vision, for the case
of RS images. We use RSAP and RSSfM to refer to these
problems.

Global shutter absolute pose (GSAP) is the problem of
calculating the pose of a calibrated camera with respect to
a known 3D model expressed in a world coordinate system.
A special case of GSAP is the so-called PnP problem which
consists in computing the pose from n 3D-2D point corre-
spondences. It is important and extensively used in many
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tasks such as SfM, simultaneous localisation and mapping
(SLAM) and augmented reality (AR). The general solu-
tion for GSAP consists in integrating a minimal problem
solver (Haralick et al. 1991; Gao et al. 2003; Wu and Hu
2006; Quan and Lan 1999) in a RANSAC loop (Fischler
and Bolles 1981) which both cleans the correspondences
and computes the corresponding pose based on a predic-
tion/verification process among putative correspondences.
The final step is a non-linear refinement of the pose param-
eters (Leng and Sun 2009). Obviously, estimating AP in the
presence of RS effects with the GS model does not give satis-
factory results (Albl et al. 2015, 2019). A few works focus on
RSAP (Saurer et al. 2015; Albl et al. 2015, 2016a). They all
extend GS-based AP solutions by incorporating the camera
motion during image acquisition in the projection model.

StM aims to recover the 3D scene structure from multiple
2D images with apparent motion. It has been extensively
studied for decades. Various applications benefit from it,
such as street view mapping and image-based object recon-
struction. However, with the intensive use of RS sensors in
consumer devices, the RSSfM problem must be considered in
real applications, involving, for instance, hand-held cameras,
UAV or vehicle embedded cameras.

The RSSfM problem has been studied recently (Hedborg
et al. 2012; Albl et al. 2016b; Ito and Okatani 2017; Zhuang
et al. 2017; Im et al. 2018). RSSfM takes multi-view point
correspondences and aims at reconstructing their 3D struc-
ture, camera poses and motion. However, all the existing
methods impose restrictions on either the movement of the
camera (short baseline, smooth motion or pure rotation), the
direction of the readout (significant change of the readout
direction between views) or the camera model (affine pro-
jection). These approaches generally lead to either complex
and highly non-linear solutions or use overly restrictive mod-
els that limit the application field. Additionally, they are
highly sensitive to degenerate configurations which com-
monly appear in real applications (Ait-Aider and Berry 2009;
Albl et al. 2016b; Zhuang et al. 2019).

We present a novel framework to solve RSAP and RSSfM
by drawing on recent results obtained in analogous non-rigid
reconstruction problems. Specifically, we propose to inter-
pret the RS images of a moving rigid surface as GS images of
avirtually deformed surface. By doing so, one can exploit the
powerful mathematical formalism and the efficient solutions
established in non-rigid vision, namely ST (for single view
deformation estimation of a known template) and NRSfM
(for recovering an unknown surface and its deformations
from an image set). Having as input a single RS image of
a known template or an RS sequence of an unknown surface,
the proposed strategy for RSAP and RSSfM has two major
steps:
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e Step 1: relaxation. Use either SfT or NRSfM to compute
the virtually deformed 3D surface for each image.

e Step 2: upgrade. Compute the actual pose and (non
deformed) structure by reintroducing the RS constraint.

Step 2 treats the pose, structure and kinematics estimation
as a purely 3D problem that compares 3D point clouds, the
virtually deformed ones and the ones to be recovered.

1.2 Previous Work and Motivation
1.2.1 Previous Work on RSAP

Saurer et al. (2015) propose a minimal solver for RSAP
assuming translational motion from five 3D-2D point cor-
respondences. This solution is limited to specific scenarios,
such as a forward moving vehicle. It is not feasible for the
majority of applications which depend on a hand-held cam-
era, adrone or amoving robot, where ego-rotation contributes
significantly to the RS effect (Hedborg et al. 2012; Duchamp
et al. 2015).

Albl et al. (2016a) propose another minimal solver, which
also requires five 3D-2D point correspondences. It is based
on a uniform ego-motion model. Nevertheless, it requires
the assistance of an inertial measurement unit (IMU), which
makes the algorithm dependent on additional sensors. Albl
et al. (2019) also propose a minimal and non-iterative
solution to RSAP called R6P, which can achieve higher
accuracy than the standard P3P (Haralick et al. 1991) by
using approximate doubly-linearized (R6P-2lin) or single-
linearized (R6P-1lin) models. The approximation used by
RO6P-2lin requires that the rotation between the camera and
world frames is small. Therefore, all 3D points need to be
rotated first to satisfy the double-linearization assumption
based on a rough estimate from IMU measurements or P3P.
This pre-processing step makes R6P-2lin suffer from depen-
dencies on additional sensors or the risk that P3P gives a non
satisfactory rough estimate. In contrast, R6P-1lin removes
the small rotation assumption and thus is free from the ini-
tialization step. Besides, R6P-2lin and R6P-1lin give up to
20 and 64 feasible solutions respectively, which need to be
verified, although some of the solutions can be removed by
enforcing reasonable values of RS rotational speed. How-
ever, they require several hundreds or several thousands of
RANSAC iterations, depending on the number of correspon-
dences, to verify all solutions. Experiments showed that both
R6P-2lin and R6P-1lin are very sensitive to noise and fail in
the case of co-planar points.

Magerand et al. (2012) present a polynomial projection
model for RS cameras and propose the constrained global
optimization of its parameters by means of a semidefinite
programming problem obtained from the generalized prob-
lem of moments method. Contrarily to other methods, this
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optimization does not require an initialization and can be
considered for automatic feature matching in a RANSAC
framework. Unfortunately, the method is computationally
very expensive.

Oth et al. (2013) propose an RSAP solution for RS cali-
bration which is quite different from the other existing works
that augment the GS projection model with the kinemat-
ics models. In contrast, they propose to use a high order
continuous-time trajectory model combined with the RS
model. Thus, both camera pose and shutter time can be recov-
ered by using iterative optimization. However, this solution
requires a video sequence as input and uses a frame-by-frame
processing which is not able to handle unordered image sets
and is also time consuming.

In summary, an efficient and stable solution to RSAP under
general motion and without the need for other sensors or
restrictive priors is still missing. Such a solution is highly
required by many potential applications.

1.2.2 Previous Work on RSSfM

Hedborg et al. (2011), Zhuang et al. (2017), and Im et al.
(2018) use an RS video sequence to solve RSSfM by assum-
ing smooth camera motion between consecutive frames.
The continuous trajectory is estimated by interpolation and
specially adapted bundle adjustment. This imposes a high
acquisition framerate which results in high computational
power requirements. Unordered image sets with large base-
line are not handled.

The method in Ito and Okatani (2017) attempts to solve
RSSfM by establishing an equivalence with self-calibrating
StM. The method requires strong priors, namely a pure rota-
tional motion, an affine camera and the availability of one
image without RS effects.

Ait-Aider and Berry (2009) first pointed out that pure
translation with a velocity vector exactly parallel to the base-
line between two camera centres is a case of degeneracy.
Lately, Zhuang et al. (2019) further offered a formal proof
that RS two-view geometry is degenerate in cases of pure
translational camera motion.

A more common degenerate case of RSSfM was pointed
out in Albl et al. (2016b). This work establishes that when
the images are taken with similar readout directions, bundle
adjustment (BA) with the RS model fails to recover struc-
ture and motion. The proposed solution is simply to avoid
these degenerate configurations, by taking images with close
to perpendicular readout directions. Obviously, this con-
siderably limits the field of use of this method. Note that
another approach to avoid the degenerate solution is fus-
ing the information of internal measurement unit (IMU) and
video sequence in continuous-time SfM (Lovegrove et al.
2013; Patron-Perez et al. 2015; Ovrén and Forssén 2018,
2019). In the present paper, we focus on RSSfM using exclu-

sively image data and an unordered general set of images
with no specific priors.

In summary, a robust and stable solution to solve RSSfM
with unordered images and without overly restrictive assump-
tions on camera motion, readout direction or projection
model is still missing. Such a solution would be an impor-
tant step in the potential widespread deployment of 3D vision
with RS imaging systems.

1.3 Contribution and Paper Organization

This paper represents an extension of our previous work (Lao
etal. 2018) where we use ST to solve RSAP. We here extend
this principle to RSSfM. Unlike all existing methods which
perform 3D-2D registration after augmenting the GS projec-
tion model with the velocity parameters, we propose to use
local differential constraints. These are established by draw-
ing analogies with two non-rigid vision techniques, namely
Shape-from-Template (SfT) and non-rigid StM (NRSfM)
(Fig. 1).

Summary of contributions We have previously shown that
the RS effect can be explained by the GS projection of a
virtually deformed shape which led to the analogy between
the RSAP problem and SfT (Lao et al. 2018). We also pro-
posed a novel RSAP method which first recovers the virtual
template deformation using SfT and then computes the pose
and ego-motion parameters using a new 3D-3D registration
method. In this paper, we not only give a more extensive
study of RSAP basing on SfT but also extend the approach
to multiple view 3D reconstruction. In summary, the main
contributions of this paper are:

e We establish the link between RSSfM and NRSfM by
showing that the RS effect in multiple images can be
explained as virtual deformations of an unknown surface.

e We propose anovel RSSfM method, illustrated in Fig. 10,
which first recovers the virtual deformed structure for
each input RS image using NRSfM and then computes
the actual rigid structure, camera pose and kinematics
using a new 3D-3D registration method.

e Together with our recent conference publication (Lao
et al. 2018), we bring a general unified framework to
solve RS 3D vision problems which consists in two main
steps, namely relaxation and upgrade.

Paper organization We first introduce the RS projection
model and the statement of the RSAP and the RSSfM prob-
lems in Sect. 2. We then give a brief introduction to the SfT
and NRSfM problems in Sect. 3. The relationships between
RSAP and ST, and between NRSfM and RSSfM, are ana-
lyzed in Sect. 4. We then present a general framework to solve
these problems in Sect. 5 followed by two instances apply-
ing this principle: in Sect. 6, we show how to solve RSAP by
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Fig.1 Overview of the proposed RSAP and RSSfM methods using analogies with non-rigidity

using SfT, while the proposed RSSfM method using NRSfM
is presented in Sect. 7. The evaluation of the proposed meth-
ods and conclusions are presented in Sects. 8—10.

2 Statement of the Problems
2.1 RS Projection Model

In the static case, an RS camera is equivalent to a GS one. It
follows a classical pinhole camera projection model defined
by the intrinsic parameter matrix K, rotation R € SO(3) and
translation t € R3 between the world and camera coordinate
systems (Hartley and Zisserman 2003):

a =15 (IR e 1]") = 1%%@Q) (M

where 795 (([X Y Z]7) = L[X Y]7 is the GS projection
operator, P; = [X i Y Z,‘]T is a 3D point in world coordi-
nates, transformed by camera pose to camera coordinates as
Q;. Finally, q; = [u; v; 1T isiits projection in the retina plane,
given by normalization from the measured image point m;
using K~

For an RS camera moving during frame exposure, each
row is captured in turn and thus with a different pose, yielding
a new projection operator IT%S:

q = 1*5Qy) = M5 QFS)

= 1% (R@) I[P 1]7) @)
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where R(v;) and t(v;) define the camera pose when the image
row of index v; is acquired. Therefore, a static 3D point P;
in world coordinates is transformed into QZR S instead of Q;,
in camera coordinates.

2.2 The RSAP Problem

With the exception of Magerand and Bartoli (2010) for RSAP
and continuous-time approaches (Lovegrove et al. 2013;
Patron-Perez et al. 2015; Ovrén and Forssén 2018, 2019)
for RSSfM, most existing methods for RS 3D vision are
based on augmenting the projection model by the rotational
and translational velocity parameters during image acquisi-
tion. Considering that the scanning time for one frame is
generally very short, different kinematics models are con-
sidered in order to express R(v;) and t(v;). Unfortunately,
these additional parameters bring non-linearities in the pro-
jection model. A compromise should then be found between
the accuracy of the kinematics model and the possibility to
find an elegant and efficient solution for the RSAP problem.
A realistic simplified model is the uniform motion dur-
ing image acquisition (constant translational and rotational
speed). Under this assumption, the RSAP problem consists
in computing the camera pose (R, tp) corresponding to the
first image row and the velocity parameters describing the
camera kinematics.

2.3 The RSSfM Problem

The aim of classical rigid SfM is to recover the 3D struc-
ture from a set of 2D GS images. Differently, by giving m
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Fig. 3 Illustration of non-rigid structure-from-motion (NRSfM).
Example extracted from Gallardo (2018)

unordered RS image points q{ , the goal of RSSfM is to recon-
struct the 3D structure P; and to estimate the camera poses
Ré, té as well as the camera kinematics for each of the images
j=1,...,m.

3 Non-rigid 3D Vision

We use two techniques designed to address the 3D recon-
struction of deformable surfaces: SfT (Fig. 2), which is a
template-based approach, and NRSfM (Fig. 3), which esti-
mates the deformations of a surface from a monocular image
set.

3.1 Shape-from-Template

ST refers to the task of template-based monocular 3D recon-
struction, which estimates the 3D shape of a deformable sur-
face by using different physic-based deformation rules (Salz-
mann and Fua 2011; Bartoli et al. 2015). Figure 4 illustrates
a geometric model of SfT. A 3D template 7 C R trans-
forms to the deformed shape S C R> by a 3D deformation

Unknown deformation ¥/

Known S
projection H

Unknown deformed
embedding @

Known warp 7]

Camera
coordinate
system

Fig.4 Geometric model of SfT based on the GS camera

¥ e Cl(r,R?). If 2 c R? is a 2D space obtained by flat-
tening the 3D template t, an unknown deformed embedding
@ C C'(£2,R?) exists which maps a 2D point p € £2 to
Q € S. Finally, Q is projected to an image point q € /
by a known GS projection function /795, The known trans-
formation between §2 and [/ is denoted as 7. It is obtained
automatically from the 3D-2D point correspondences using
Bsplines (Rueckert et al. 1999). The goal of SfT is to obtain
the deformed surface S given p, q and the first order deriva-
tives of the optical flow at p, namely g—; (p). The deformation
constraints in SfT are categorized as follow.

Isometric deformation The geodesic distances are pre-
served by the deformation (Bartoli et al. 2015; Salzmann and
Fua 2011; Collins and Bartoli 2015; Chhatkuli et al. 2017).
This assumption commonly holds for paper, cloth and volu-
metric objects.

Conformal deformation The isometric constraint can be
relaxed to conformal deformation, which preserves angles
and may handle isotropic extensible surfaces such as a bal-
loon (Bartoli et al. 2015).

Elastic deformation Linear (Malti et al. 2015; Malti and
Herzet 2017) or non-linear (Haouchine et al. 2014) elastic
deformations are used to constrain extensible surfaces. Elas-
tic SfT does not have a local solution, in contrast to isometric
and conformal SfT, and requires boundary conditions to be
available, such as a set of known 3D surface points.

3.2 Non-rigid Structure-from-Motion

NRSfM aims to recover the 3D shapes of an object under
deformation from a set of 2D GS images. Several NRSfM
methods have been presented over the last two decades with
various specifications. In particular, Hu et al. (2013) requires
no missing data while (Agudo and Moreno-Noguer 2015;
Agudo et al. 2016) require rigid motion at the beginning of
the sequence. Akhter et al. (2009) and Gotardo and Martinez
(2011) require smooth video sequences. These assumptions
do not hold with unordered RS image sets. Besides, some
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Fig. 5 Analogy 1: equivalence between the RS projection of a rigid
object and a GS projection of a virtually deformed object

piece-wise methods (Varol et al. 2009; Taylor et al. 2010;
Russell et al. 2014) require a segmentation of the image
domain into regions, which may be costly with large input
datasets, or unavailable. Recently, Kumar et al. (2019) pro-
pose anovel NRSfM solution which is able to recovers dense
depth without solving for 3D motion parameters. But unfor-
tunately, this approach requires successive frames as input,
and does not therefore cope with unordered image set which
we focus on in this paper.

4 Analogies Between Rigid RS Projection and
Deformable GS Projection

We introduce two analogies between non-rigid vision and RS
vision in the single-view and multiple-view cases.

4.1 Template-Based, Single-View Case

The main idea is that distortions in RS images caused by
camera kinematics can be expressed as the virtual deforma-
tion of a 3D shape captured by a GS camera. We first model
the GS projection of a known 3D shape after a deformation
'8
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Fig. 6 Analogy 2: equivalence between multiple RS projections of a
rigid 3D scene and multiple GS projections of a virtually deformable
3D scene

q = 95w (P)) 3)

In our case the virtual deformation is due to the motion of each
surface point during image acquisition. Thus we can denote
the deformation as ¥ RS (P;) = R(v;)P; +t(v;). Eq. (3) then
becomes similar to Eq. (2):

q = 195wk ey
= 95 (R(v)P; + t(v)))) = M5 (Q)) )

Analogy I: Eq. (4) and Fig. 5 show that the image obtained
by amoving RS camera is equivalent to a deformed 3D shape
observed by a GS camera.

We name this virtual corresponding deformation WS as
the equivalent RS deformation and the virtually deformed
shape wRS(P,) as the equivalent RS deformed shape.

4.2 Template-Free, Multiple-View Case

We now consider an unknown 3D structure observed by a
moving RS camera taking multiple images. The analogy
described in the previous section can be reused for each image
of the sequence.

We define ¥/ as a deformation that maps the original 3D
structure P; from world coordinates to camera coordinates
directly. Then, the RS projection described in Eq. (2) may be
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RS image Template

I ‘Step 2: 3D-3D registration ‘

Virtual deformed shape /

Camera pose &
instantaneous-motion

Fig. 7 An overview of the proposed pose and kinematics estimation
method: Step I: given an RS image and a known 3D template, we
reconstruct the equivalent RS deformed shape using SfT. Step 2: by per-
forming 3D-3D registration between the equivalent RS deformed shape
and the template, camera pose and kinematics are obtained simultane-
ously

rewritten as:
q/ = IS ®)) = (1195 o y/)(Py) )

Analogy 2: Eq. (5) and Fig. 6 show that a set of RS images
of a rigid scene may also be interpreted as the same scene
under virtual deformations and captured by multiple GS cam-
eras.

Since the deformations are virtual, the 3D scene does not
actually deform in the real world. Therefore, we called the
original 3D shape P; as actual structure, the deformations v/
as the equivalent RS deformations, and the virtually deformed
shape I~’l] = o/ (P;) as the equivalent RS deformed shape.

5 Proposed Solution Framework

The analogies drawn in Sect. 4 allow us to interpret RS
images from a new perspective: as GS images of virtual defor-
mations. Thus, in contrast to the existing RS vision solutions
which try to constrain the RS projection with various kine-
matics models, we propose a framework to solve these two
problems, which consists in two main steps:

1. Relaxation By interpreting the RS effect as caused by a
virtual deformation, we relax the RS constraint of camera
kinematics, and transform the problem to NR reconstruc-
tion with a GS camera model to recover the equivalent RS
deformation.

2. Upgrade We then upgrade the equivalent deformations
to the actual rigid structure by reintroducing the RS con-
straint.

We propose two solutions to RSAP and RSSfM by apply-
ing this principle in Sects. 6 and 7.

6 Solving RSAP Using a Virtual Deformation

We introduce the proposed novel RSAP method, illustrated
in Fig. 7, which first recovers the virtual template deforma-
tion using SfT and then computes the pose and kinematics
parameters using 3D-3D registration.

6.1 Step 1: Reconstruction of the Equivalent RS
Deformed Shape

After showing the link between the RSAP and S{T problems,
we focus on how to reconstruct the equivalent RS deformed
shape by using SfT. Since the assumption on the physical
properties of the template plays a crucial role in SfT we
should determine which one of the deformation constraints
can best describe the equivalent RS deformation.

6.1.1 Equivalent RS Deformation Under Different
Kinematics Models

Any kinematics model can be regarded as a combination of
six elementary motions: translation along the X (dy), Y (dy),
Z (d;) axes and rotation about the X (w,), Y (wy), Z (@)
axes. Figure 8 shows RS images and equivalent RS deformed
shapes produced by different types of RS kinematics. Albl
etal. (2016a) and Rengarajan et al. (2017) illustrated four dif-
ferent types of RS effects in 2D produced by camera motion.
Besides, Ovrén et al. (2013) showed the 3D deformations
captured by a moving RGB-D camera. In contrast, we base
our approach on virtual 3D deformations. Figure 8 also shows
that the corresponding virtual deformations caused by differ-
ent camera motions can be summarized into three types, by
assuming a vertical scanning direction of the 3D template:

e (i) Horizontal wobble: translation along the x-axis, rota-
tion along the y-axis and z-axis create surface wobble
along the horizontal direction (perpendicular to the scan
direction). In such cases, the distances are preserved only
along the horizontal direction while the angles change
during the deformation.

@ Springer
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(i) (iii)

(ii) (i)

Fig. 8 The 3D template shapes (green shapes in the third and sixth
row) captured by an RS camera under different atomic kinematics (first
and fourth row) yield distorted RS images (second and fifth row). The
exact same images are obtained as the projection of the corresponding
virtually deformed 3D shapes (blue shapes in the third and sixth row)
into a GS camera. The types of (i), (ii) and (iii) corresponding virtual
deformation are given in the main text (Color figure online)

e (ii) Vertical shrinking/extension: translation along the y-
axis or rotation along the x-axis produce a similar effect,
which shrinks or extends the 3D shape along the scan
direction (vertical). This deformation preserves the dis-
tances along the horizontal direction but changes the
angles. Thus, unlike an elastic deformation, stretching
the surface in the vertical direction will not introduce a
compression in the horizontal direction.

e (iii) Vertical wobble: beside horizontal wobble, rotation
along the z-axis also leads to wobble in the vertical direc-
tion. The distances along the horizontal direction remain
unchanged while the angles vary dynamically.

@ Springer

6.1.2 Choosing the Appropriate Deformation Prior of SfT

It is important to notice that the virtual deformations do not
follow any existing physics-based SfT surface models such
as isometry, conformity or elasticity. Isometric surface defor-
mation preserves the distances along all directions, while
the equivalent RS distortion only preserves the distances
along the horizontal direction. The conformal deformation
is a relaxation of the isometric model, which allows local
isotropic scaling and preserves the angles during deforma-
tion. The elastic surface may stretch in one direction and
generally produces shrinking in the orthogonal direction. In
contrast, no shrinking or extension occurs along the horizon-
tal direction during the equivalent RS deformation.

We focus on reconstructing the equivalent RS deformed
shape based on the isometric and conformal deformations for
the following reasons:

e The isometric constraint holds along the horizontal direc-
tion on the 3D shapes. Since the image acquisition time
is commonly short, the effects of extension and com-
pression of the 3D shape are limited, which makes
the isometric model work in practice. Alternatively, the
conformal model can reconstruct extensible 3D shapes.
Thus, the conformal model as a relaxation of the isometric
model can be theoretically considered a better approxi-
mation to the equivalent RS deformation.

e A complex equivalent RS deformed shape will be pro-
duced if an RS camera is under general kinematics, which
is the composition of six types of atomic kinematics.
Therefore, different surface patches on the shape could
be under different 3D deformations. Importantly, the iso-
metric and conformal S{T solutions we used from Bartoli
et al. (2015) exploit local differential constraints and
recover the local deformation around each point on the
shape independently. The assumption we implicitly make
is thus not to be taken at the global image level but in the
neighbourhood of each point. This turns out to be a very
mild and valid assumption in practice.

e The analytical solutions to SfT using the isometric and
conformal models reported in Bartoli et al. (2015), are
fast and show the potential to form real-time applica-
tions (Collins and Bartoli 2015). In contrast, the existing
solutions to the elastic model are slower (Malti et al.
2015; Malti and Herzet 2017) and require boundary con-
ditions unavailable in RSAP .

Isometric deformation Bartoli et al. (2015) showed that
only one solution exists to isometric surface reconstruction
from a single view and proposed the first analytical algo-
rithm. A stable solution framework for isometric SfT has
been proposed later (Chhatkuli et al. 2017). Thanks to the
existing isometric algorithms, we can then stably and effi-
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Fig.9 Choosing the best equivalent RS shape from conformal SfT

ciently obtain a single reconstruction of the equivalent RS
deformed shape lI/RS(P[), i=1,...,n.

Conformal deformation Contrarily to the isometric case,
conformal-based SfT theoretically yields a small, discrete set
of solutions (at least two) and a global scale ambiguity (Bar-
toli et al. 2015). Thus, we obtain multiple reconstructed
equivalent RS deformed shapes by using the analytical SfT
method under the conformal constraint. However, only one
reconstruction is close to the real equivalent RS deformed
shape WS (P;). Therefore, we pick up the most practically
reasonable reconstruction based on distance preservation
along the horizontal direction.

We assume that a total of M reconstructed shapes ¥ jRS @P),
j =1,..., M are obtained. As shown in Fig. 9 the 2D points
located close to each other in the scanning direction in the
image are segmented into b groups Gg, k = 1, ..., b of Ny
points. For this task, we use a region-growing algorithm start-
ing from b seed points. Note that b is a parameter set in
advanced according to the size of the image. Differently from
the classical region growing approach for image segmenta-
tion, which performs growing in the two dimensions based
on the similarity between seed and neighbors, our grouping
algorithm grows the regions along the vertical axis only. The
growing criterion is thus the difference of row index being
lower than a threshold d,,,,,. The stopping criterion of grow-
ing in one direction is that the bound of one region reaches the
upper or lower bound of another region. In our experiments,
the number of groups b is set as 6 and the threshold d;,4y is
experimentally set as a 10% length of the image height.

Then, we calculate a global scale factor s j of each recon-
structed equivalent RS deformed shape to the template by
using s; = soiy 2f iy it divr/djy, where djpr is the

3D template
P

Best solution

Distance comparison

Euclidean distance between 3D points P; and P;s and di]i’
is the Euclidean distance of the corresponding reconstructed
3D points lIlj.RS(Pi) and lI/]RS(Pi/). We run over i,i’ =
1, ..., n and calculate the average value. Finally, we choose
the reconstruction ¥RS(P) with the smallest sum of dis-
tance differences along the horizontal direction between each
equivalent RS deformed shapes d.x I.JI., and known 3D template
dx;; as the best solution:

b Ny )
argminz Z |sjdxl.ji, —dx;jjr| (6)
JEl,M] k=1ii'=1
i’

6.2 Step 2: Camera Pose and Kinematics
Computation

6.2.1 Kinematics Model

Various kinematics models have been used in existing work
such as spline interpolation methods (Lovegrove et al. 2013;
Patron-Perez et al. 2015; Ovrén and Forssén 2018, 2019),
SLERP (Hedborg et al. 2012), Rodrigues formulation (Ait-
Aider et al. 2006) for the rotation and the constant speed
translation (Zhuang et al. 2017). The proposed 3D-3D RS
registration can be easily carried out with any kinematics
model. Since the acquisition time of a frame is commonly
short, we use a constant velocity model (so-called linearized
model) which is a good compromise between accuracy and
complexity and is widely used in previous work (Magerand
et al. 2012; Dai et al. 2016; Albl et al. 2015, 2016b):

R(;) = I+ [1]xvi)Ro
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t(v;) = to +dv; @)

where Rg and tg are the rotation and the translation of the
first row, which we set as the reference pose for the frame,
dand @ = [w], wy, w3] " are the translational and rotational
velocities respectively. Thus, the rotation during acquisition
can be defined by Rodrigues’s formula. With the assumption
of short acquisition time, Rodrigues’s formula can be simpli-
fied as I 4+ v;[@] by using the first order Taylor expansion,
where [w] is the skew-symmetric matrix of .

6.2.2 3D-3D Registration

After obtaining the equivalent RS shape ¥ RS (P), we regis-
ter the virtually deformed shape to the known 3D template
P using the RS kinematics model. By iteratively minimiz-
ing the distance errors between the known 3D template and
the reconstructed equivalent RS shape using Eq. (7), we can
obtain the camera pose and kinematics parameters simulta-
neously:

n

argmin >~ [ R@)P; + tw) - w5 @) | ®)
Ro.tp,@.d i=1

We slightly abused the term ‘registration’ to mean that the
3D points of the virtually deformed surface are fitted with the
corresponding 3D points of the template. This can be seen
as a registration where the recovered parameters are not a
mere rigid transformation but a local motion with constant
velocity.

Initialization: we initialize the parameters in Eq. (8) as
follows:

e We propose two strategies to initialise Ro and to: (i)
computing the absolute orientation between the equiv-
alent RS shape ¥ X5(P) and the known 3D template P
using Horn et al. (1988). (ii) performing a classical GSAP
method (Haralick et al. 1991) by using the correspon-
dences from the first group (shown in Fig. 9).

e The kinematics parameters (@,d) are initialized by the
following two steps. (1) group image points into sets
of vertically close points (so that the RS effect can be
neglected) and run PnP for each set. (2) initialize d
and @ by computing the relative translation and rotation
between groups and dividing by the scan time. Alterna-
tively, we can follow a similar procedure by grouping the
points of the deformed surface into subsets of close 3D
points, which are then registered by computing a rigid
body motion (Horn et al. 1988).
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Fig.10 Overview of the proposed RSSfM method. Step I: given multiple
RS images, the equivalent RS deformed shapes are reconstructed using
NRSIM. Step 2: by performing an iterative 3D-3D RS registration using
GPA and RSAP as initialization, the actual structure, camera pose and
kinematics are obtained simultaneously

However, in many practical situations, it is more conve-
nient and efficient to set the initial values of d and w to
0, which in our experiments always allowed convergence
toward the correct solution.

Refinement: the Levenberg—Marquardt algorithm is used
in the non-linear pose and kinematics estimation from Eq. (8).

6.3 Outlier Rejection

Note that outliers in 3D-2D correspondences appear com-
monly when performing matching in most of real datasets.
As reported in Chhatkuli et al. (2017), SfT will fail if out-
liers are not removed. Thus, we use the following outlier
rejection procedure: (1) the outliers are firstly rejected by
using Pizarro and Bartoli (2012). Therefore, none or very few
outliers remain even in challenging datasets. (2) besides, we
further perform a convex L1-minimization (Chhatkuli et al.
2017) in place of the LLS problem in Dierckx (1993) to
reduce the effect of outliers during the reconstructions.
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7 Solving RSSfM Using Virtual Deformations

We introduce the proposed RSSfM method, illustrated in
Fig. 10, which firstrecovers the virtual deformed structure for
each input RS image using NRSfM and then computes the
actual structure, camera pose and kinematics using 3D-3D
RS registration.

7.1 Step 1: Reconstruction of the Equivalent RS
Deformed Shapes

NRSfM aims to recover the 3D shapes of an object under
deformation from a set of 2D GS images. Thus, it allows us
to reconstruct the virtual equivalent RS deformed shapes f’i]
for every RS image.

However, following our discussion in Sect. 3.2, not all
NRSfM methods are suitable for RSSfM. We use isometric
NRSM (Iso-NRSfM) (Parashar et al. 2018) for the following
reasons:

1. Similarly to SfT and RSAP, isometry is a good approxi-
mation to model the equivalent RS deformation.

2. It handles missing data due to occlusions, and unordered
input images.

3. It requires m > 3 views with linear complexity in the
number of views and points, and thus combines the use of
minimal data with higher efficiency than the other NRSfM
methods.

We now briefly describe the two NRSfM methods from
Parashar et al. (2018).

General isometric NRSfM The Iso-NRSfM method mod-
els the object’s 3D shape for each image by a Riemannian
manifold and deformations as isometric mappings. Each
manifold is parameterized by embedding the correspond-
ing retinal plane. This modeling allows one to reason on the
metric tensor and Christoffel symbols (Lee 1997), directly
in retinal coordinates, and in relationship to the inter-image
warps, which can be computed from point correspondences
between images. Based on the theorem that the metric tensor
and Christoffel symbols may be transferred between views
using only the warps, a system of two quartics in two vari-
ables that involves up to second order derivatives of the warps
can be created for an infinitesimally planar surface at each
point. An iterative method is then used. The solution of this
system are the normals of the surface in all views. The shapes
can finally be recovered by integrating the normal field for
each view.

Isometric NRSfM with the infinitesimal planarity (IP)
assumption In infinitesimal planarity, one assumes that a
surface is at each point locally planar. Thus the surface is
globally curved and represented infinitesimally by a set of
planes. Since we assume the linearized model for RS kine-

matics, the virtual equivalent RS deformations are quasi
continuous and smooth in the case of wobble, shrinking
and extension, which can thus be interpreted by infinitesi-
mal planarity. The general solution for Iso-NRSfM uses the
solution with infinitesimal planarity as initialization. How-
ever, infinitesimal planarity (InfP-NRSfM) alone gives good
results while being even faster than the general algorithm.
Therefore, we compare the use of both Iso-NRSfM and InfP-
NRSM to reconstruct the equivalent RS deformed shapes in
our experiments.

Discussions of the chosen NRSfM Note that isometric and
conformal ST are easily and fast solved by existing methods.
Their solution is stable and fast to obtain, and they clearly
implement two different deformation models, isometry being
the strongest one (Bartoli et al. 2015). Differently, NRSfM
is a way more difficult problem than SfT, because of the lack
of an object model. Two facts are important in our discus-
sion, available from Parashar et al. (2018): (1) the first fact
is that isometry and conformity actually form the same solu-
tion space and methods in NRSfM. In other words, there is no
conformal NRSfM. (2) the second fact is that the equations of
isometric NRSfM are tremendously difficult to form and to
solve since they depend on the second-order derivatives of the
optic flow, in contrast to SfT’s, which depend only on the first-
order derivatives. Besides, they are nonlinear second-order
partial differential equations which currently have no direct
solution. The assumption of IP simplifies these equations
and allows one to find an initial solution in closed-form by
IfRSSfM, which is of key practical importance. This solution
can then be iteratively refined by exploiting the original equa-
tions in IsoORSSfM. It is thus important to understand if the IP
solution to NRSfM leads to accurate enough reconstruction
estimates in the RS context. In other words, if IFRSSfM can
be close to IsoRSSfM in accuracy. Indeed, the IP solution
to NRSfM is way faster to compute than the non-IP solu-
tion, and could thus be used without the non-IP refinement
in a time-critical system, provided that its performance are
satisfying.

7.2 Step 2: Recovering the Actual Shape and
Cameras

7.2.1 3D-3D RS Registration

After obtaining equivalent RS deformed shapes f’f for each
view by NRSfM, we have to estimate the actual shape, camera
poses and kinematics. However, the transformations from the
actual shape to the equivalent RS deformed shapes are non-
rigid. Therefore, as shown in Fig. 11, we design a 3D-3D RS
registration by minimizing the sum of squares of the distance
difference between the equivalent RS deformed shapes f’f
recovered by NRSfM and re-deformed shapes ¥/ (P;) which
are obtained from the actual surface under the constraints of
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Fig. 11 3D-3D RS registration recovers the actual shape P; (green) by
minimizing the sum of squares of the distance between re-deformed

shapes (black) ¥/ (P;) and the equivalent RS deformed shapes f’lj (red,
yellow and blue) recovered by NRSfM (Color figure online)

the RS kinematics model of each view:
m n . . ) 2
arg min Z Z Vl./ Hsz -yl (P) H
B i=1i=1
with g = (P, R, ), o, a/]
i=1,....n, j=1,...,m )
where Vl.j denote the binary variables that equal 1 if a 3D
point P; is visible in the jM image and 0 otherwise. The
deformation function v/ is constrained by the RS kinematics
model:

v/ (Pr) = RWHP; +t(v)) (10)

where R(v;’ ) and t(v;’ ) are defined by the linearized model
described in Eq. (7).

The cost function in Eq. (9) is non-linear least-squares.
The availability of a good initial guess for the actual surface
points, camera pose and kinematics is thus crucial to ensure
convergence toward the solution. This is addressed in the
next section.

7.2.2 Initialization

We propose to use GPA and RSAP. GPA solves the problem
of registering between multiple observed shape data (Dryden
and Mardia 2016). In this problem, a reference shape which
should be as similar as possible to all observed shapes and
one global transformation per observed shape are computed.
In RSSfM, we assume that the deformations of a given actual
point P; are random. Thus the actual scene may be chosen
as the ‘average’ shape of all the registered virtual deformed
shapes. We can then roughly estimate the actual scene P;
by performing GPA using the virtual deformed shapes f’{ as
observed shapes. Then using RSAP from this rough com-
puted actual scene and the RS images, we find the global
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camera pose R}, t} and kinematics /,d’, j = 1,...,m to
initialize the optimization in Eq. (9).

7.2.3 Implementation Details

Iso-NRSfM and InfP-NRSfM (Parashar et al. 2018) are both
used to reconstruct the equivalent RS deformed shapes.!
Then we use the stratified GPA method (Bartoli et al. 2013)
to initialize the optimization described by Eq. (9),> which is
eventually conducted using the Levenberg-Marquardt algo-
rithm.

7.2.4 Planar Degeneracy

The combination of NRSfM and the RS constraints makes
the proposed two-step method to work well in the common
degenerate configurations of RSSfM. An intuitive explana-
tion to this desirable property is as follows. First, NRSfM
reconstructs consistent virtually deformed shapes by con-
sidering that the viewed surface is locally smooth and
differentiable. This is a convenient prior on the scene struc-
ture which, though widely applicable, is not used by any other
RSSfM method. Once the 3D surfaces are reconstructed for
each image, the RS assumption serves to constrain the pose
and kinematics parameters to be compatible with these while
the degeneracy was already resolved at the first step.

Specifically, we explain how using the 3D-3D error to
recover the scene structure and camera motion instead of the
reprojection error allows us to fix the degenerate configu-
ration uncovered in Albl et al. (2016b). Albl et al. (2016b)
stated that any number of RS images with parallel readout
directions can be explained by a planar scene undergoing
a rotation about the camera x-axis. Bundle adjustment with
the linearized RS model always converges toward this trivial
solution. However this case is not degenerate for the proposed
3D-3D method. Note that the method of Albl et al. (2016b)
focuses on RSSfM with an unordered image set, which is the
same as the case we focus on in this paper and different from
the BA approach for RS video sequence RSSfM (Hedborg
et al. 2012).

We assume without loss of generality that an RS camera
has the pose Ry = I'and to = [0 0 O]T, while the ground-
truth of the kinematics is @ and dST. According to Egs. (7)
and (10), a 3D point PST = [X Y Z]T projects as m; =
[ui vi]" = TS (A+[@]xv)P; +dv;). Bundle adjustment
minimizes the sum of squares of the reprojection errors (Albl
et al. 2016b):

e = q; — 15 (I + [@]xv;)P; + dv;) (11)

! http://igt.ip.uca.fr/~ab/Research/Local-Iso-NRSfM_v1pl.zip.
2 http://igt.ip.uca.fr/~ab/Research/SGPA_v1p0.tar.gz.
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http://igt.ip.uca.fr/~ab/Research/SGPA_v1p0.tar.gz
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In our method however, the first step using NRSfM does
not have degeneracies (Parashar et al. 2018). After obtaining
the equivalent deformed shape f’lj = I+ [T, vl-)PlGT +
dGTv,- , the second step uses the 3D-3D re-deformation error:

e =P —w(P;) =P — (I+ [@]xv)P; +dv)) (12)

Obviously, both Eqgs. (11) and (12) vanish for the correct
configuration P; = PI.GT, w = o9, d = d°T. However,
if we alter the 3D scene and camera to the configuration
P, =[x02z]",0=[-100]",d=[000]", Eq. (11)
still vanish, while Eq. (12) does not. This means that the RS
images could be explained by projecting the 3D scene to the
plane Y = 0 with the specific kinematics (@ = [—1 0 O]T).
However, this ambiguity does not occur for the proposed 3D-
3D RS registration.

7.3 Outlier Rejection

Similar to the case of RSAP, the proposed RSSfM method
which uses NRSfM as the first step also has the risk of failing
in the presence of outlier correspondences. Thus, we used a
dedicated and efficient outlier rejection strategy (Pizarro and
Bartoli 2012) which is based on local surface smoothness
and is able to handles large proportions of outliers.

8 Experimental Results in RSAP

We compare the proposed methods IsoRSAP and ConRSAP
to two state-of-the-art AP approaches:

e [soRSAP: our method with the analytical isometric solu-
tion to SfT (Chhatkuli et al. 2017).3

e ConRSAP: our method with the analytical conformal
solution to ST (Bartoli et al. 2015).3

e PnP: the GSAP solution (Gao et al. 2003).*

e RO6P-2lin: an RSAP solution (Albl et al. 2015) with dou-
ble linearized model® in RANSAC loop.

e R6P-1lin: an RSAP solution (Albl et al. 2019) with single
linearized model® in RANSAC loop.

8.1 Synthetic Data

We simulated a calibrated pin-hole camera with 640 x 480 px
resolution and 320 px focal length. The camera was located

3 http://igt.ip.uca.fr/~ab/Research/SfT_vOp2.zip.

4 estimateWorldCameraPose function in MATLAB.
3 http://cmp.felk.cvut.cz/~alblcene/r6p.

© https://github.com/CenekAlbl/RnP.
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Fig. 12 Reconstructed equivalent RS deformed shapes by IsoRSAP
(magenta points) and ConRSAP (green crosses) compared to ground
truth structure (blue circles) under six types of camera kinematics (Color
figure online)

randomly on a sphere with a radius of 20 units and was point-
ing to a simulated cylindrical surface (10 units length and 10
units radius) with an average scanning direction varying from
0° to 90°. We drew n points on the surface to form the 3D
template. Random Gaussian noise with standard deviation o
was also added to the 2D projected points m.

8.1.1 Recovering the Equivalent RS Deformed Shape

We first evaluate the ability of IsoRSAP and ConRSAP to esti-
mate the equivalent RS deformed shapes from RS images.
We measure the mean and standard deviation of distances
between the reconstructed 3D points and the corresponding
points on the 3D template under six atomic kinematics types
(Sect. 6.1.1). For each type, we run 200 trials to obtain statis-
tics. We varied the number of 3D-2D matches from 10 to
121 and used a noise level o = 1 px. At each trial, the speed
was randomly set with translational speed between 0 and 3
units/frame and rotational speed between 0 and 20 deg/frame.
The results in Fig. 12 show that ConRSAP provides sta-
ble and high accuracy results for the equivalent RS deformed
shape reconstruction while /soRSAP achieves similar perfor-
mances in the cases of translations and rotation along x-axis.
The quantitative evaluation in Table 1 demonstrates that
ConRSAP generally performs better than /soRSAP. Specif-
ically, it indicates that the advantages of ConRSAP are
significant in the cases of ego-rotation along the y or z-axis.
The only exception is in translation along the z-axis, where
the equivalent RS deformation is with relatively smaller
extension/shrinking than the other types. Thus, IsoRSAP
gives slightly better results than ConRSAP. All observations
confirm our analysis in Sect. 6.1.1 that conformal surfaces
can generally better model the equivalent RS deformation.
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Table 1 Mean (le;|, |ec|) and

. d dy d; Wy w w;
standard deviation (o7, o¢c) of * ) : * Y :
reconstruction errors (expressed | 0.0130283 0.0113629 0.0001183 0.0023273 0.0020031 0.1338190
in units) of the equivalent RS
deformed shape by IsoRSAP lec| 0.0040963  0.0052104  0.0009037 0.0000921 0.0008493  0.0008417
and ConRSAP under six types of oy 0.0001810 0.0000943 0.0000014 0.0000834 0.0007209 0.0393570
camera kinematics oc 0.0000318 0.0000529 0.0000310 0.0000206 0.0003639 0.0001201
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Fig.13 APerrors for IsoRSAP, ConRSAP, PnP,R6P-2lin and R6P-1lin
under different ego-translations

8.1.2 Pose Estimation

We compared IsoRSAP and ConRSAP in AP to PnP, R6P-
2lin and R6P-1lin with 200 iterations RANSAC. Since the
ground truth of camera poses are known, we measured the
absolute error of rotation (deg) and translation (units).
Accuracy vs speed We fixed the number of 3D-2D corre-
spondences to 60 and noise level to o = 1 px. We increased
the translational speed and rotational speed from O to 3
units/frame and 30 deg/frame gradually. At each configu-
ration, we run 100 trials with random velocity directions and
measured the average pose errors. The results in Figs. 13
and 14 show that both IsoRSAP and ConRSAP provide sig-
nificantly more accurate estimates of camera orientation
and translation with all ego-rotation configurations (wy, w,
and w;) compared to PnP. R6P-2lin achieves better results
than PnP while the ego-motion speeds are slight. However,
with the speed increasing, R6P-2lin, which is initialized by
PnP, losses its accuracy especially when the rotation errors
provided by PnP is larger than 6°. In contrast, R6P-1lin,
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Fig.14 APerrors for IsoRSAP, ConRSAP, PnP,R6P-2lin and R6P-1lin
under different ego-rotations
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Fig.15 AP errors for IsoRSAP, ConRSAP, PnP,R6P-2lin and R6P-1lin
under different image noise levels

IsoRSAP and ConRSAP are not affected and provide stable
estimations. Under the six ego-motions, IsoRSAP and ConR-
SAP show globally a slight superiority in camera rotation
estimation compared to R6P-1lin.

Accuracy vs image noise In this experiment, we evaluated
the robustness of the five methods against different noise
levels. Thus, we fixed the camera translational and rotational
speed to 1 unit/frame and 15 deg/frame. Random noise with
levels varying from O to 2 px was added to the 60 image
points. The results in Fig. 15 show that R6P-1lin, IsoRSAP
and ConRSAP are robust to the increasing image noise. In
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contrast, PnP is relatively sensitive to image noise. R6P-
2lin achieves precise estimations with small images noise
level (smaller than 2 px). But after PnP fails to provide accu-
rate estimation of camera rotation, the accuracy of R6P-2lin
decreases for both rotation and translation estimation.
Accuracy vs number of correspondences We evaluated the
performance of the proposed methods with different num-
bers of 3D-2D correspondences. The camera was fixed with
translational and rotational speed at 1 unit/frame and 15
deg/frame. The image noise level was set to 1 px. Then we
increased the number of correspondences from 10to 121. The
results in Fig. 16 show that the estimation accuracy of all five
methods increases with the number of correspondences. R6P-
2lin, R6P-1lin, IsoRSAP and ConRSAP provide significantly
better results in both rotation and translation estimation com-
pared to PnP.However, R6P-2lin is affected by the inaccurate

initializations provided by PnP while R6P-1lin,IsoRSAP and
ConRSAP are stable.

Accuracy vs outlier rate In this experiment, we evaluated
the performance of the proposed methods against different
outlier rates. The number of correspondences is fixed to 60
but with varying outlier rate from O to 20%. Following the
discussion in Sect. 6.3, IsoRSAP and ConRSAP perform out-
liers rejection by using Pizarro and Bartoli 2012.” The results
in Fig. 17 show that the estimation error of PnP increases
significantly with outlier rate. As aresult, R6P-2lin is increas-
ingly affected by erroneous initializations and also provides
slightly increasing estimation errors. In contrast, R6P-1lin,
IsoRSAP and ConRSAP show strong robustness against out-
liers and provide significantly better and stable results.

Accuracy vs curvature In this experiment, we vary the
radius of the surface (inverse of the curvature) from 5 to 30
units. The results in Fig. 18 show that the proposed meth-
ods IsoRSAP and ConRSAP provide stable estimations. The
experiment confirms that R6P-2/in and R6P-1lin do not han-
dle planar or nearly planar scenes with the observation that
the estimation errors of R6P-2lin, R6P-1lin grow rapidly
when the inverse curvature is larger than 15 units.

8.2 Real Data
8.2.1 RS Video of a Plane

The five methods have been further evaluated by using real
RS images. A chessboard with 64 3D-2D correspondences
was captured by a hand-held logitech webcam. Strong RS
effects are present on the recorded video due to the quick
arbitrary camera motion. After obtaining the camera pose
and kinematics, the boundaries of the chessboard were repro-
jected into the RS image. As shown in Fig. 19, when the
poses and velocity are accurately recovered, the reprojected
boundaries perfectly fit the chessboard image boundaries. In
addition to visual checking, the mean value of reprojection
errors of 64 corners of each frame were used as a quantitative
measurement.

In the first row of Fig. 19, all methods obtained accept-
able reprojected boundaries due to the limited RS effects.
However, in the second row, with the camera quickly mov-
ing, R6P-2lin, R6P-1lin and PnP provide unstable estimates
of camera pose. In contrast, both /soRSAP and ConRSAP
significantly outperform PnP and R6P. It is noteworthy that
ConRSAP achieves slightly smaller reprojection errors than
IsoRSAP. This coincides with the observations made in the
synthetic experiments and confirms the theoretical analysis
of Sect. 6.1.1 that the conformal constraint is more suitable
to explain the equivalent RS deformations.

7 http://igt.ip.uca.fr/~ab/Research/FBDSD_v1p0.tar.gz.
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8.2.2 RS Video of a Full 3D Scene

We tested the four methods for AP of a 3D scene. The public
dataset (Hedborg et al. 2012) was used, which was captured
by both RS and GS cameras installed on a rig. The 3D points
were obtained by performing SfM with the GS images. 3D—
2D correspondences are obtained by matching RS images to
GS images. Since a large number of correspondences, R6P-
2lin and R6P-1lin run with 1000 iterations of RANSAC. The
results are presented in Fig. 20. All the RS methods R6P-2lin,
R6P-1lin, IsoRSAP and ConRSAP give clearly more accurate
estimates than PnP. However, we can observe that R6P-2lin
is affected by PnP when the estimates of PnP are inaccurate.

@ Springer

8.3 Discussion

From both synthetic and real data experiments, as expected,
all RSAP methods R6P-2lin, R6P-1lin, IsoRSAP and ConR-
SAP achieves significantly better estimates compared to the
GS based method PnP. However, R6P-2lin suffers from the
large RS effect due to the bad initialisation provided by PnP.
In contrast, R6P-2lin, IsoRSAP and ConRSAP provide much
more stable results.

A key advantage of the proposed methods is that they
work for all types of scene geometries, including coplanar
points (contrarily to R6P-1lin and R6P-2lin which are not
designed for coplanar points). Planar scenes are common in
real applications such as augmented reality and in man-made
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environments. It is not uncommon, while moving a camera
indoor, to end up seeing a wall or a table top, which are
considered planar or very nearly planar objects. There is a
large body of tracking systems for planar targets. This makes
our approach a general solution for real applications.

8.4 Running Time

SfT has already be made very fast in Collins and Bartoli
(2015), Famouri et al. (2018), and Magnenat et al. (2015).
Since the our previous work (Lao et al. 2018), we have re-
implemented our method using a realtime version of SfT.
On average, it took around 0.91s for IsoRSAP (0.01s for
isometric reconstruction and 0.9s for 3D-3D registration)
and 11.6s for ConRSAP (10.6 s for conformal reconstruction
and 1.2s for 3D-3D registration). Note that although ConR-
SAP achieves the most accurate estimation. However, it is
time-consuming and not suitable for real-time applications.
In contrast, ConRSAP shows the potential to work in real-
time. A possible way is to derive the closed-form solution to
RS 3D-3D registration.

9 Experimental Results in RSSfM

In our experiments, the proposed methods were compared to
two state-of-the-art techniques:

IsoRSSfM : the proposed method with Iso-NRSfM.
IfRSSfM : the proposed method with InfP-NRSfM.

SfM: an SfM method close to Wu (2013).8

RO6PBA: StM followed by R6P (Albl et al. 2015) to
initialize camera pose and velocity, and refinement by
RSBA (Albl et al. 2016b).

9.1 Synthetic Data

We simulated RS cameras located randomly on a sphere with
a radius of 20 units and pointing to a cylindrical surface
consisting of 81 points. The length of surface is 8 units with
a varying radius. The RS image size is 640 x 480 px and the
focal length 320 px. We compared all methods by varying
the speed, the noise on image measurements, the number of
views, the surface curvature and the readout direction. The
results are obtained after averaging the errors over 50 trials.
The default setting is 15 degs/frame and 0.5 units/frame for
rotational and translational speed, 1 px noise, 6 views, 15
units radius (inverse curvature).

8 http://mathworks.com/help/vision/examples/structure-from-
motion-from-multiple-views.html.

o Ground-truth Virtual RS deformed shape|

l 3D point and its projection
and its projection with RS

with GS

Reconstruction with
ISORSSfM

Reconstruction with
IfRSSfM

+ X

0]

X

.

Fig. 21 Deformed shapes reconstructed by IfRSSfM and IsoRSSfM in
comparison to ground truth under six types of camera kinematics

Table 2 Mean (|emp|, |erso|) of reconstruction errors (expressed in
units) of the equivalent RS deformed shape by IfRSSfM and IsoRSSfM
under six types of camera kinematics

dy dy d, Wy wy w;
lemgp| 0.067 0.065 0.063 0.115 0.120 0.122
lersol 0.067 0.065 0.062 0.110 0.120 0.121

Best performance shown in bold

9.1.1 Reconstructing the Equivalent RS Deformed Shapes

We first evaluate the ability of I[fRSSfM and IsoRSSfM to
reconstruct the equivalent RS deformed shapes. We mea-
sure the mean distance between the reconstructed 3D points
and the corresponding ground truth 3D points computed by
Egs. (5) and (10). The results in Fig. 21 and Table 2 show
that the two proposed methods accurately reconstruct the
deformed shapes under different kinematic types. Although
IsoRSSfM achieves slightly better reconstruction for d;, @,
and w; than IfRSSfM, no significant visual differences can be
observed. This observation verifies the fact that the assump-
tion of infinitesimal planarity is bale to model the globally
curved surface with many local infinitesimal planes. Sim-
ilarly to the discussion of RS deformation in Sect. 6.1.1,
isometric surface deformation, which both [fRSSfM and
IsoRSSfM are based on, preserves the distances along all
directions, while the equivalent RS distortion only preserves
the distances along the horizontal direction. Therefore, we
can still observe minor construction errors.

@ Springer
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Fig. 22 Camera and shape errors for SfM, R6PBA, IfRSSfM and
IsoRSSfM with increasing rotational and translational speed

9.1.2 Varying Speed

We evaluated the robustness of the four methods against
increasing rotational and translational speed from 0 to 30
degs/frame and 1 units/frame gradually, but with random
directions. We measure the reconstruction errors (mean dif-
ference between computed and ground truth 3D points in
units) and pose errors (mean difference between the com-
puted and ground truth rotation ey = arccos( (tr(RRgT) —
1)/2) and translation egans = arccos(t ' tgr/(|t] Itgrl)) of
each camera in deg). The results in Fig. 22 show that the esti-
mated errors of SfM grow with speed. ROPBA achieves better
results with slow kinematics, while its errors grow dramat-
ically beyond 15 degs/frame. In contrast, both [fRSSfM and
IsoRSSfM provide the best results under all configurations.

9.1.3 Varying Noise Level

In Fig. 23, we observe that the errors for all methods increase
linearly when noise varies from O to 3 pixels. However, SfM
shows a better tolerance to noise than R6PBA even though its
global performance is lower. Both proposed methods achieve
the best performance with all noise levels.
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9.1.4 Varying Number of Views

Figure 23 shows that all the four methods give descending
errors from 3 to 12 views. IfRSSfM and IsoRSSfM provide
similar results, outperforming SfM and R6PBA.

9.1.5 Varying Curvature

In this experiment, we vary the radius of the surface (inverse
of the curvature) from 5 to 30 units. The results in Fig. 23
show that all the four methods perform better with smaller
curvature. The performance of IfRSSfM and IsoRSSfM are
the best among the compared methods. However, as expected
IsoRSSfM provides slightly better results than /fRSSfM when
the curvature is large.

9.1.6 Varying Readout Direction

We evaluate the robustness of the four methods with an RS
critical motion sequence. We vary the readout directions of
the cameras from parallel to perpendicular by increasing the
mean angle between them from 0° to 90° (degenerate to sta-
ble). InFig. 23, we observe that R6PBA provides better results
than SfM with at least 30° readout direction. While smaller,
the reconstruction error of ROPBA grows dramatically, which
means that it collapses into the planar degenerate solution.
As expected from the analysis in Sect. 7.2.4, IfRSSfM and
IsoRSSfM provide stable results under all settings.
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Fig. 24 Reconstruction results and camera errors of SfM, R6PBA,
IfRSSfM and IsoRSSfM for synthetic RS images

9.1.7 Data from Public Benchmark

We tested the four methods on synthetic RS image datasets
from Forssén and Ringaby (2010). We generated unordered
image sets by randomly selecting 2 image triplets. In Fig. 24,
we observe that quantitatively our methods work better
in motion estimation and that qualitatively SfM obtains a
deformed reconstruction, while R6PBA performs worse and
provides an extremely deformed reconstruction. In contrast,
IfRSSfM and IsoRSSfM provide reconstructions close to
ground truth.

9.2 Real Data
9.2.1 Planar Marker Dataset

We use the RS video previously used in Sect. 8.2.1 which cap-
tures a chessboard with strong RS effects. First, the frames
from the video sequence were manually categorized into
vertical and horizontal readout direction. Then we designed
two kinds of experiments: (1) we randomly chose 3 images
from the ‘vertical” group and ‘horizontal’ group respectively.
(2) we randomly chose 6 images from the ‘vertical’ group
only. Since the rigid 3D shape is known, we measured the

Vertical + Horizontal

E

E=10.4

Vertical

E=15.2

E=225 E=27 E=26

| Readout direction Ground truth  —SfM —R6PBA  — InfRSSfM IsoRSSfM |

Fig.25 Reconstructed shapes and mean of reconstruction errors £ (in
mm) of SfM, R6PBA, IfRSSfM and IsoRSSfM with ‘vertical+horizontal’
and ‘vertical’ as inputs respectively for the planar marker dataset

mean distance difference between the computed and ground
truth 3D points. The results in Fig. 25 show that SfM pro-
vides deformed reconstructions in both experiments. ROPBA
obtains better results than SfM in the ‘vertical+horizontal’
experiment, while it suffers from the planar degeneracy and
gives a strongly deformed shape in the ‘vertical-only’ exper-
iment. In contrast, [fRSSfM and IsoRSSfM provide a correct
reconstruction in both experiments.

9.2.2 Cup and Box Datasets

A cylinder cup and a cubic box were captured by a hand-held
Logitech webcam with strong RS effects. The videos were
with close readout directions during the acquisition. Again,
we randomly chose 6 frames from each video sequence. The
ground-truth is now not available. Thus, we use two methods
to evaluate the reconstruction results: (1) visual checking.
(2) for the cup dataset, we fitted the computed shapes with
cylinders by using the ‘pcfitcylinder’ function in MATLAB
and measured the fitting errors. For the box dataset, we seg-
mented and fitted the computed scenes with three planes in

@ Springer
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Fig. 26 Visual checking and quantitative evaluations of SfM, R6PBA,
IfRSSfM and IsoRSSfM for the cup dataset

CloudCompare’. Thus, the mean value of fitting errors and
between normal vector of the three planes (supposed to be
90 degs) are used as quantitative evaluation criteria. We can
observe in Figs. 26 and 27 that SfM fails in handling the RS
effects and provides deformed reconstructions for the two
datasets. Since the readout directions are close to parallel,
RO6PBA obtains extremely deformed results, close to planar.
IfRSSfM and IsoRSSfM perform best in both the visual check-
ing and quantitative evaluations for both datasets.

9.2.3 Real RS Sequence

In this experiment, we evaluated the performance of the
proposed methods with a challenging real RS sequence (Hed-
borg et al. 2012) where the camera moves through the scene
and the reconstruction grows sequentially. The results in
Fig. 28 show that SfM is affected by RS effects and provides
deformed reconstruction and unsmooth camera trajectory
estimation. Again, with parallel readout directions, ROPBA
provides strongly deformed shape. In contrast, [fRSSfM and
IsoRSSfM provide visually better reconstruction and more
reasonable camera pose estimates.

9 https://www.danielgm.net/cc/.
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Fig.28 Visual checking of SfM, R6PBA, IfRSSfM and IsoRSSfM for a
real RS video

9.3 Running Time

The proposed methods were implemented in MATLAB. The
experiments were conducted on an i5 CPU at 2.8GHz with
4G RAM. Table 3 summarises the results and shows that the
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Table3 Comparison of computation time (in seconds) of SfM, R6PBA,
IfRSSfM and IsoRSSfM for 6, 9 and 12 views and 40, 60 and 80 points
correspondences with default 3 views and 80 points

Number of points 40 60 80
SfM 4 4 5

R6PBA 12 17 24
IfRSSfM 45 46 49
IsoRSSfM 54 61 67
Number of views 6 9 12

SfM 7 12 20

R6PBA 54 100 153
IfRSSfM 74 93 116
IsoRSSfM 90 109 132

running time of SfM, IfRSSfM and IsoRSSfM grows slightly
with the increasing number of point correspondences and
views. In contrast, the computation time of R6PBA increases
significantly.

10 Conclusion

We have presented a novel framework to solve RS vision
problems from a new angle. By showing that the RS images
of a rigid surface can be interpreted as images of a virtu-
ally deformed surface taken by an GS camera, we can first
relax the RS constraint and transform the problem to NR
reconstruction. Then we upgrade the reconstructed virtual
deformations to the actual rigid scene by reintroducing the
RS constraints. Based on this framework, we have proposed
two novel methods to the RSAP and RSSfM problems respec-
tively.

Firstly, we have proposed novel methods for the RSAP
problem using SfT. By analyzing the link between the SfT
and RSAP problems we have shown that RS effects can be
explained by the GS projection of a virtually deformed shape.
As a result the RSAP problem is transformed into a 3D-
3D registration problem. Experimental results have shown
that the proposed methods outperform existing RSAP tech-
niques in terms of accuracy and stability. We interpret this
improved accuracy as the result of two differences compared
to existing work: (i) by drawing the analogies with non-
rigid 3D vision, we solve RSAP locally and analytically. (ii)
transforming the problem of 3D-2D registration into 3D-3D
registration enables us to use 3D point-distances instead of
the re-projection errors, which carry more physical mean-
ing and make the error terms homogeneous. Moreover, the
proposed methods work for all types of scene geometries,
including coplanar points, contrarily to state of the art meth-
ods.

Then we have extented the idea of using non-rigid vision
to the RSSfM problem. By showing that the RS effects in
multiple images can be explained by multiple virtual defor-
mations of arigid 3D shape captured by GS cameras, we drew
a link between RSSfM and NRSfM. As a result, RSStM is
transformed into a 3D-3D registration problem, which we
have shown theoretically and experimentally can success-
fully avoid the risk of collapsing into a degenerate solution
with the usual camera capture manner (parallel readout direc-
tions). We have shown that the proposed methods outperform
the existing RSSfM methods in accuracy and stability.

Our experiments have also shown that the isometric and
conformal deformation models are well suited for the virtual
deformations caused by RS effects in most practical applica-
tions.

Limitations and perspectives The observations in our
experiments show that the isometric and conformal defor-
mation models well explain the RS equivalent deformation.
However, following our discussion in Sect. 6.1.1, no physics-
based constraint in the literature of NR vision can exactly
model the RS virtual deformation. This introduces a mod-
elling error for both RSAP and RSSfM. Thus, a possible
extension of our work is to derive the exact differential prop-
erties of the equivalent RS deformation.
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