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Rolling Shutter Homography and its Applications
Yizhen Lao and Omar Ait-Aider

Abstract—In this article we study the adaptation of the concept of homography to Rolling Shutter (RS) images. This extension has
never been clearly adressed despite the many roles played by the homography matrix in multi-view geometry. We first show that a
direct point-to-point relationship on a RS pair can be expressed as a set of 3 to 8 atomic 3x3 matrices depending on the kinematic
model used for the instantaneous-motion during image acquisition. We call this group of matrices the RS Homography. We then
propose linear solvers for the computation of these matrices using point correspondences. Finally, we derive linear and closed form
solutions for two famous problems in computer vision in the case of RS images: image stitching and plane-based relative pose
computation. Extensive experiments with both synthetic and real data from public benchmarks show that the proposed methods
outperform state-of-art techniques.

Index Terms—Rolling shutter, Homography, Relative Pose estimation, Image stitching.
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1 INTRODUCTION

A large number of consumer CMOS cameras are equipped with
RS sensors because of their low-cost, low-energy-consumption,
high frame rate and less-background-noise [1]. In this acquisition
mode, image pixels are exposed row by row commonly from the
top to the bottom. Thus, when the camera is moving during the
acquisition, the exposure delay between the lines leads to visual
distortions called RS effects, such as on Fig. 2(a).

Ignoring the effects of RS in computer vision applications
results in performance degradation or even failure [2], [3]. Over
the last decade, several works have revisited 3D computer vision
by taking RS into account such as RS effects removal [4], [5],
[6], [7], absolute pose estimation [2], [8], [9], [10], epipolar
geometry [3], [11] and Structure from motion (SfM) [12], [13],
[14], [15], [16], [17].

1.1 Related Works and Motivation

Estimating the camera motion by using points is one of the most
studied minimal problems in computer vision. For example, with
Global Shutter (GS), at least 3 point matches are needed to
estimate the absolute pose [18], while at least 5 are needed to
recover the relative pose between two calibrated GS views [19].
Given the higher complexity of RS projection model [20], more
points are commonly needed. Methods for structure and motion
estimation with RS images can be grouped into two categories:
optical flow and epipolar geometry.

Optical flow methods: In [16], 8pt and 9pt linear solvers were de-
veloped to recover the relative pose of a RS camera that undergoes
constant velocity or constant acceleration motion. Unfortunately,
as shown in Fig. 1, consistency between the camera poses and their
motion only holds with high-frame rates and smooth movements.
In addition to the resulting high computation load, unordered
image sets can not be processed. Besides, inter-frame delay has
to be exactly pre-calibrated.
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Fig. 1: (a) Video-based (frame-by-frame processing) methods
assume smooth [4], [21] or even constant velocity [16] between
each two consecutive frames. However, for a general unordered set
of images (b), it is hard or impossible to enforce the relative poses
and their instantaneous-motions basing on these assumptions.

Epipolar geometry: In multi-view reconstruction, many common
configurations become critical with RS cameras and lead to
reconstruction ambiguities. Authors in [15] provide mathematical
analysis for one, two and some multiview configurations. They
provide practical recipes on how to photograph with RS cameras
to avoid reconstruction errors. This method can be used to unblock
some situations but it is not a solution to the standard SfM prob-
lem. Authors in [3] introduce 20pt and 44pt linear solvers for pure
translational and uniform motion models respectively. However,
the pure translational motion assumption is not feasible to model
the camera motion in most of practical applications. Although
more general, the 44-point solution requires too many corre-
spondences and is therefore not suitable for use with RANSAC
(Random Sample Consensus).

Parametrised homographies: Authors in [4] addressed the rectifi-
cation and stabilization problem of RS videos by using a sequence
of parametrised homographies (one for each image row pair from
two consecutive frames). Camera poses are estimated for last
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Fig. 2: RS images (a). Stitching results obtained with well-known commercial stitching applications such as AutoStitch [22] (b)
Microsoft Image Composite Editor (ICE) [23] (c) Adobe Photoshop [24] (d) state-of-the-art multiple homographies stitching method
APAP [25] (e) and AANAP [26] (f). The stitching results and the correction of the RS effects obtained with the the proposed method
are shown in (g) and (h).

rows of each frame. Intermediate translations and rotations are
interpolated from these. The camera motion is parametrised as
a continuous curve. Curve parameters are solved for using non-
linear least squares over inter-frame correspondences obtained by
feature tracking. Thus, for general unordered set of images with
large baselines, it is impossible for this method to enforce rela-
tionships between the camera poses and their motion (Fig. 1(b)).
Besides, as in [16], pre-calibration of the inter-frame delay is
required. Similarly, authors in [27] try to solve the RS correction
problem by building multiple independent homographies between
each of image rows. However, this method also requires multiple
successive and smooth-motion frames as input since the use
of a key-row interpolation approach [4]. Besides, only iterative
nonlinear solution is provided for motion estimation.

One of the closest work to ours is [21], which employs a
homography mixture and proposes a linear solution to estimate
inter-frame motion. However, The major issue of this method is
that points on a given row (row-block) in the first image have to
be matched with points which also belong to a row (row-block)
in the second image. This obviously limits the number of matches
among unordered images even with small inter-frame motion.

In summary, as shown in Fig. 1, estimating relative poses from
general unordered RS image sets remains an open problem and
there is a need for new methods which require less input data
(i.e. number of matches) and which work for various camera
configurations. With some acceptable constraints on the scene
structure or on the camera motion, homography could be used
instead of epipolar geometry to recover the relative pose with
less point matches [28], [29], [30]. It has many applications
such as image registration and plane-based camera relative pose
estimation. However, homography-based methods have not been
fully studied and adapted to the RS case.

In this paper, we show that the relationship between points on a

RS pair can be expressed as a set of 3 to 7 atomic 3× 3 matrices,
depending on the kinematic model used for the instantaneous-
motion during image acquisition. These matrices establishes a
direct point-to-point transformation similarly to the homography
matrix in the GS case. We call this set of matrices RS Homogra-
phy. We also propose two linear solvers for the computation of this
RS Homography using point correspondences. We first propose a
theoretical 36pt linear solution and then derive a practical 13.5pt
linear solver that gives good estimates of the homography between
two RS views. We also investigate the use of the proposed method
for two major computer vision applications:
(1) Plane-based Relative Pose Estimation: Although the RS
relative pose problem has been addressed before [3], [16], a
more efficient and robust solution which handles planar scenes
is proposed by using RS homography in this paper.
(2) Image Stitching: Users nowadays frequently create panora-
mas by rotating RS cameras, e.g. ‘Pano’ mode in iPhone. Besides,
360 VR images such as Street View could also be taken with
RS cameras installed on a moving platform such as the Google
car [31]. As shown in Fig. 2(b-e), the most well-known com-
mercial stitching software or state-of-the-art methods, which are
based on the GS model, lead to poor results in presence of RS
effects. Therefore, designing a RS stitching method by using RS
Homography will be of valuable significance.

1.2 Paper Organization and Contributions

In this paper, we first introduce the RS instantaneous-motion
and projection models in section 2. Then we derive the full and
the simplified RS homography matrices in section 3 followed
by the solutions to estimate these matrices from point matches
in section 4. Next we show how to estimate the RS relative
pose based on a planar scene in section 5 and also RS image
stitching by using RS homography in section 6. Finally, we present
experimental results of the proposed methods in section 8.
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The contributions of this paper can be summarized as follows:

• This is the first work to investigate the theoretical RS
homography matrices which can be expressed as a unique
set of 3 to 8 atomic 3 × 3 matrices, depending on the
kinematic model used for instantaneous-motion during
image acquisition.

• We develop practical linear solvers for RS Homography
matrices computation from two RS views with possi-
bly large baseline (no constraint is done on the interf-
frame motion, the kinematic model concerns only the
instantaneous-motion).

• By using the RS Homography, we develop a linear solution
for the plane-based relative pose estimation problem. We
also introduce a solution to RS image stitching which not
only can correctly align RS images (Fig. 2(g)) but also
removes the RS effects at the same time (Fig. 2(h)).

2 ROLLING SHUTTER PROJECTION MODEL

RS Projection Model. Let a 3D point Pi = [x, y, z]> (w.r.t to
the world coordinate system) be projected into a calibrated RS
camera as an image point qi = [ui, vi, 1]

>:

siK
−1qi = RiP+ ti (1)

where, si is the scene depth of the corresponding camera. [Ri, ti]
is the camera pose when scanline (row) vi is taken. K is the
camera calibration matrix. For the readability, image points q are
pre-multiplied by K−1 in the rest of the paper.

We use the linearized uniform model to constrain the
instantaneous-motion of a RS camera during the frame acquisition,
which has been justified in previous works [3], [15], [16]. Thus,
given the angular velocity ω = [ωx, ωy, ωz]

> and the transla-
tional velocity d = [dx, dy, dz]

>, we can express the camera
pose [Ri|ti] at row vi as:

Rvi = (I+ [ω]×vi)R0 tvi = t0 + dvi (2)

where I is the 3 × 3 identity matrix, [ω]× is a skew-symmetric
matrix produced by ω, and [R0|t0] is the camera pose of the first
row.
Rolling Shutter Relative Pose. Let us consider n 3D points
Pi, i ∈ [1, n] imaged from two RS views with the camera
poses [Rvi |tvi ] and [Rv′i

|tv′i ] as qi = [ui, vi, 1]
> and q′i =

[u′i, v
′
i, 1]
> in the two images respectively. [I|0] and [R0|t0] are

the camera poses of the first row of each image.
We assume that Pi in world coordinates can also be expressed

as Pvi
and Pv′i

in the two camera coordinate systems. The
transformations are written as:

Pvi = Rvi
P+ tvi (3)

and

Pv′i
= Rv′i

P+ tv′i (4)

By substituting Eq. 3 into Eq. 4 and eliminating P, we obtain the
transformation between Pvi and Pv′i

as:

Pv′i
= Rv′i

P+ tv′i = Rv′i
(R>vi(Pvi − tvi)) + tv′i

= Rv′i
R>vi︸ ︷︷ ︸

Ri

Pvi + tv′i −Rv′i
R>vitvi︸ ︷︷ ︸

ti

(5)

Thus, the rotation Ri and the translation ti between the the
row vi in the first image and the row v′i in the second image are:

Ri = (I+ [ω2]×v
′
i)R0(I− [ω1]×vi)

ti = t0 + d2v
′
i − (I+ [ω2]×v

′
i)R0(I− [ω1]×vi)d1vi

(6)

where {ω1,d1} and {ω2,d2} are instantaneous-motion parame-
ters of the two RS views.

3 RS HOMOGRAPHY

3.1 GS Homography Matrix

Let us assume that a planar object (a plane) is observed from two
GS cameras with the poses [I|0] and [R0|t0]. The transformation
between the two corresponding image points qi and q′i can be
written as:

αiq
′
i = HGSqi = (R0 −

t0n
>

d
)qi, αi = z′/z (7)

where αi is a scale factor that depends on the depth of Pi in
each camera. HGS is the GS homography matrix, n is the normal
vector of the observed plane and d is the distance from the first
camera to the plane under the constraint n>Pi + d = 0.

3.2 RS Homography Matrix

Expressions of the normal vector and the distance to plane
in an RS frame. When instantaneous-motion occurs during the
acquisition, H between two RS cameras varies with different row
combinations. The relative pose between the row vi in the first
image and the row v′i in the second image is defined in Eq. (6).
However, due to the instantaneous-motion of the first view, the
normal vector of the plane and the distance to the plane are also
changing dynamically with different scanlines (rows).

Firstly, we consider an RS camera is at the pose of its first row,
then the plane constraint is:

n>0 Pi + d0 = 0 (8)

By substituting the transform from Pi to Pvi in Eq. (3) into
Eq. (8), we obtain:

n>0 (R
>
vi(Pvi

− tvi)) + d0

= n>0 R
>
vi︸ ︷︷ ︸

n>vi

Pvi + d0 − n>0 R
>
vitvi︸ ︷︷ ︸

dvi

= 0 (9)

Then by substituting linear instantaneous-motion model Eq. (2)
into Eq. (9), we can finally express the normal vector of the plane
and distance to the plane w.r.t row vi as:

n>i = n>0 (I− [ω1]×vi)

di = d0 − n>0 (I− [ω1]×vi)d1vi
(10)

where n0 and d0 are the normal vector and the distance for the
first row.

Derivation of RS Homography matrices. For convenience, we
denote Ri, ti in Eq. (6) and n>i , di in Eq. (10) as:
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Ri = R0 +R1vi +R2v
′
i +R3viv

′
i

ti = t0 + t1vi + t2v
′
i + t3v

2
i + t4viv

′
i + t5v

2
i v
′
i

−n>i
di
≈ −n>0 − n>0 [ω1]×vi

d0
= N0 +N1vi

(11)

where, the auxiliary variables are defined as:


R0 = R0

R1 = −R0[ω1]×
R2 = [ω2]×R0

R3 = −[ω2]×R0[ω1]×



t0 = t0
t1 = −R0d1

t2 = d2

t3 = R0[ω1]×d1

t4 = −[ω2]×R0d1

t5 = [ω2]×R0[ω1]×d1 N0 = −n>0
d0

N1 =
n>0 [ω1]×

d0

Then, by substituting Eq. (11) into Eq. (7), we can obtain:

HRS,i = Ri −
tin
>
i

di
= (R0 +R1vi +R2v

′
i +R3viv

′
i)

+ (t0 + t1vi + t2v
′
i + t3v

2
i + t4viv

′
i + t5v

2
i v
′
i)

(N0 +N1vi)

= (R0 + t0N0)︸ ︷︷ ︸
HGS

+(R1 + t1N0 + t0N1)︸ ︷︷ ︸
H1

vi

+ (R2 + t2N0)︸ ︷︷ ︸
H2

v′i + (R3 + t4N0 + t2N1)︸ ︷︷ ︸
H3

viv
′
i

+ (t3N0 + t1N1)︸ ︷︷ ︸
H4

v2i + (t5N0 + t4N1)︸ ︷︷ ︸
H5

v2i v
′
i

+ (t3N1)︸ ︷︷ ︸
H6

v3i + (t5N1)︸ ︷︷ ︸
H7

v3i v
′
i

(12)
thus, we can rewrite Eq. (12) in a simplified form by using eight
3× 3 atomic matrices HGS ,H1...H7 as:

HRS,i =HGS +H1vi +H2v
′
i +H3viv

′
i +H4v

2
i+

H5v
2
i v
′
i +H6v

3
i +H7v

3
i v
′
i

(13)

We draw attention to the fact that despite the presence of row
indexes vi and v′i in the expression of HRS , matrices HGS and
H1 to H7 do not depend on these indexes and are unique for all
the point matches of any image pair.

3.3 Simplified RS Homography Matrix
Approximation of RS relative pose. Under the small rotation
assumption, the second order and higher terms in Eq. (6) can
be ignored. This simplification method is also used in [2], [17],
[32], [33]. This approximation can be justified in that we force the
translational speed vectors d1 and d2 to be constant in the world
coordinate system, which is physically coherent with the constant
velocity kinematic model. Therefore, we obtain an approximate
expression of RS relative pose:

Ri = R0 −R0[ω1]×vi + [ω2]×R0v
′
i

ti = t0 + d2v
′
i −R0d1vi

(14)

Fig. 3: Examples illustrating the general RS Homography case (a)
and the rotate-only case (b).

Approximation of the plane pose. In practice, since the trans-
lation during acquisition is commonly much smaller than the
distance from the camera to the scene plane, we can ignore the
terms affected by translational velocities. In addition, we drop the
second order terms, and obtain the approximate expressions:

n>i = n>0 (I− [ω1]×vi)

di = d0 − n>0 d1vi ≈ d0
(15)

Using both approximations in Eq. (14) and (15), the RS
homography matrix HRS between the row vi and the row v′i in
the two images can be simplified:

HRS,i = HGS +A1vi +A2v
′
i

where, A1 = −R0[ω1]× +
R0d1n

>
0

d0
+

t0n
>
0 [ω1]×
d0

A2 = [ω2]×R0 −
d2n

>
0

d0

(16)

where A1 and A2 are two atomic matrices. Note that RS Ho-
mography consists of the GS homography matrix HGS defined
in Eq. (7) and of the two matrices A1, A2 which contain the
instantaneous-motion parameters.
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4 RS HOMOGRAPHY ESTIMATION

Now, we show how to linearly estimate the RS homographies
defined in Eq. (13) and (16).

4.1 4pt GS Homography Estimation
The GS homography matrix is usually computed using the Direct
Linear Transform algorithm (DLT). Based on Eq. (7), the cross
product is given by q′vi ×HGSqi = 0. This gives two linearly
independent equations:

[
0> −q>i v′iq

>
i

q>i 0> −u′iq>i

]H
>
GS,(1)

H>GS,(2)

H>GS,(3)

 = LihGS = 0 (17)

where 0> = [0, 0, 0]. Given n point correspondences (n > 4), we
obtain a system in the form LhGS where L is a 2n × 9 matrix.
The solution is then the singular vector associated to the smallest
singular value of L.

4.2 36pt Full RS Homography Matrix Estimation
In the RS case, the computation is less straightforward. By substi-
tuting Eq. (13) into hGS , Eq. (17) can be rewritten as follows:

MRS,ihRS =



0 qi

−qi 0
v′iqi −u′iqi

0 viqi

−viqi 0
viv
′
iqi −viu′iqi

0 v′iqi

−v′iqi 0

v′i
2
qi −u′iv′iqi

0 viv
′
iqi

−viv′iqi 0

viv
′
i
2
q −u′iviv′iqi

0 vi
2qi

−vi2qi 0
vi

2v′iqi −u′ivi2qi

0 vi
2v′iq

−vi2v′iqi 0

vi
2v′i

2
qi −u′ivi2v′iqi

0 vi
3qi

−vi3qi 0
vi

3v′iq −u′ivi3qi

0 vi
3v′iqi

−vi3v′iqi 0

vi
3v′i

2
qi −u′ivi3v′iqi



>


HGS,(1)
>

HGS,(2)
>

HGS,(3)
>

H1,(1)
>

H1,(2)
>

H1,(3)
>

H2,(1)
>

H2,(2)
>

H2,(3)
>

H3,(1)
>

H3,(2)
>

H3,(3)
>

H4,(1)
>

H4,(2)
>

H4,(3)
>

H5,(1)
>

H5,(2)
>

H5,(3)
>

H6,(1)
>

H6,(2)
>

H6,(3)
>

H7,(1)
>

H7,(2)
>

H7,(3)
>



=

[
0
0

]
(18)

where H(i), A1,(i) and A2,(i) are the ith rows of HGS , A1 and
A2 respectively. MRS,i is a 2× 72 matrix, which consists of the
terms of ui, vi and qi. hRS is a 72 × 1 vector that contains the
components of HGS , H1 . . . H7.

Each point correspondence gives two constraints such as
Eq. (18). Given n point correspondences (n > 36), we obtain
a system in the form MRShRS = [0, . . . , 0]> where M is a
2n× 72 matrix. This system is solved using SVD.

4.3 13.5pt Simplified RS Homography Estimation

In the simplified case of section. 3.3, by substituting Eq. (16) into
hGS , Eq. (17) can be rewritten as:



0 qi

−qi 0
v′iqi −u′iqi

0 viqi

−viqi 0
viv
′
iqi −viu′iqi

0 v′iqi

−v′iqi 0

v′i
2
qi −u′iv′iqi



>


HGS,(1)
>

HGS,(2)
>

HGS,(3)
>

A1,(1)
>

A1,(2)
>

A1,(3)
>

A2,(1)
>

A2,(2)
>

A2,(3)
>


= MRS,ihRS =

[
0 0

]>

(19)

where MRS,i reduces to a 2 × 27 matrix and hRS,i is a 27 × 1
vector with 27 unknowns. Thus, with at least 14 point correspon-
dences, we can estimate hRS linearly by using SVD. In order to
obtain stable results, we perform a normalization of MRS in the
way explained in [3], [28].

We extend the standard RANSAC pipeline [34] for homog-
raphy verification [22] with the proposed 13.5pt linear solver
to obtain a robust estimate of the RS homography matrix and
matching inliers.

5 PLANE-BASED RS RELATIVE POSE AND
INSTANTANEOUS-MOTIONS ESTIMATION

The 36pt solver requires a large amount of point matches and
therefore it is not a feasible solution for RANSAC. However, using
the simplified RS homography brings inaccuracy.

Thus, we suggest the following pipeline: 1) Solve the RS
homography matrix by estimating the atomic matrices (HGS , A1

and A2) with the 13.5pt solver. 2) Linearly extract the relative
pose and instantaneous-motions. 3) Refine all the parameters in a
nonlinear optimization based on the full RS Homography.

5.1 Computing Relative Pose and Instantaneous-
motions

Relative pose [R0|t0] and plane normal vector n0. Once HGS

is known, it can be decomposed into R0, t0 and n0 by using SVD.
d0 is set as 1 and absorbed by t0. Generally, this decomposition
yields four solutions, where only at most two are physically
valid. The positive depth constraint can be used to find the final
solution [35], [36].

Instantaneous-motions. We can further retrieve instantaneous-
motion parameters thanks to two linear equation systems derived
from matrices A1 and A2:
(1) First we compute ω1 = {ωx

1 , ω
y
1 , ω

z
1} and d1 = {dx1 , d

y
1, d

z
1}

by using the previously computed values of [R0|t0] and n0 in
matrix A1 (6 unknowns with 9 equations): Based on the definition
of A1 in Eq. (16), we obtain the following linear system in ω1

and d1 (detailed derivation in supplemental materials):
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0 −G13 G12 nx0R0,(1)

G13 0 −G11 ny0R0,(1)

−G12 G11 0 nz0R0,(1)

0 −G23 G22 nx0R0,(2)

G23 0 −G21 ny0R0,(2)

−G22 G21 0 nz0R0,(2)

0 −G33 G32 nx0R0,(3)

G33 0 −G31 ny0R0,(3)

−G32 G31 0 nz0R0,(3)




ωx
1

ωy
1

ωz
1

dx1
dy1
dz1

 =



A1,11

A1,12

A1,13

A1,21

A1,22

A1,23

A1,31

A1,32

A1,33


(20)

where the auxiliary matrix G is defined as G = R0,(i) + t0n
>
0

and R0,(i) is the ith row of R0. As a result, 6 unknowns in ω1

and d1 can be obtained by solving Eq. (20) linearly.

(2) Then we extract ω2 = {ωx
2 , ω

y
2 , ω

z
2} and d2 = {dx2 , d

y
2, d

z
2}

from A2 (6 unknowns with 9 equations): Based on the definition
of A2 in Eq. (16), we obtain the following linear system in ω2

and d2 (detailed derivation in supplemental materials):


0 −R0,(3) R0,(2)

R0,(3) 0 R0,(1)

−R0,(2) R0,(1) 0
−n0 0 0
0 −n0 0
0 0 −n0



>
ωx
2

ωy
2

ωz
2

dx2
dy2
dz2

 =



A2,11

A2,12

A2,13

A2,21

A2,22

A2,23

A2,31

A2,32

A2,33


(21)

Thus ω2 and d2 can be obtained by solving Eq. (21) linearly.

5.2 Nonlinear Refinement.

The final step consists in a nonlinear refinement of pose and
instantaneous-motion parameters with n pairs of point matches
which are the inliers from the 13.5pt-RANSAC. This is achieved
by minimizing the following cost function where the full homog-
raphy matrix is used:

argmin
R0,t0,n0,d0,ω1,ω2,d1,d2

=
n∑

i=1

(MRS,ihRS)
2 (22)

where MRS,i and hRS are defined in Eq. (18).

6 RS IMAGE STITCHING

6.1 Working Assumptions

The goal of image stitching is to create a very wide angle image (or
a panorama) from a set of images. After finding the homography
matrix that aligns each pair of neighboring cameras, all the images
are transformed so that they are mapped into the same projective
space.

For that purpose, the cameras are assumed to have rotated
about (approximately) the same center of projection. Thus, the
RS homography matrix is further simplified by setting ti, d1 and
d2 to 0, which leads to HGS = R0, A1 = −R0[ω1]× and
A2 = [ω2]×R0.

6.2 Stitching Pipeline

6.2.1 RS homography estimation with 13.5pt solver

The RS homography matrix of coinciding optical centres has
the same structure as the simplified RS homography matrix in
Eq. (16). Thus, the 13.5pt method (section 4.3) is also feasible
here.

6.2.2 RS image alignment

When aligning two GS images all image points can be directly
mapped to new locations by applying q′i = HGSqi. For two RS
images, Eq. (16) shows that any pair of feature correspondence,
a 2D homography relationship (HRS) however still holds locally
by the controls of row indexes in the two images. However, in
stitching case, we want to map all pixels in the first image to
the second image without prior about the row indexes of their
correspondents. Thus, based on Eq. (16), we will develop a global
mapping function which align the two images.

Global RS homography mapping. Notice that the row index v′i is
present in both sides of Eq. (13). However, by transformation and
substitution, the local homography relationship becomes a glob-
ally parametrized non-linear mapping η(qi) defined as follows
(detailed derivation in supplemental materials):

[
u′i v′i

]>
= η(ui, vi) =

{
α(ui, vi)
β(ui, vi)

where,

α(ui, vi) =
d

e
and β(ui, vi) =

−b±
√
b2 − 4ac

2a
with,

ab
c

 =


H>2,(3) H>GS,(3) −H>GS,(2) −H>GS,(2)

H>3,(3) H>1,(3) −H>2,(2) −H>1,(2)
H>5,(3) H>4,(3) −H>5,(2) −H>4,(2)
H>7,(3) H>6,(3) −H>7,(2) −H>6,(2)


> 

qi

qivi
qiv

2
i

qiv
3
i



[
d
e

]
=



H>GS,(1) H>GS,(3)

H>1,(1)vi H>1,(3)vi
H>2,(1)β(ui, vi) H>2,(3)β(ui, vi)

H>3,(1)viβ(ui, vi) H>3,(3)viβ(ui, vi)

H>4,(1)v
2
i H>4,(3)v

2
i

H>5,(1)v
2
i β(ui, vi) H>5,(3)v

2
i β(ui, vi)

H>6,(1)v
3
i H>6,(3)v

3
i

H>7,(1)v
3
i β(ui, vi) H>7,(3)v

3
i β(ui, vi)



>


qi

qi

...
qi



(23)
where HGS,(i) is the ith row of HGS . There are two feasible
solutions for the mapping but only one is correct in practice. The
strategy of selecting the correct solution will be discussed later.

Global RS homography mapping for simplified case. The Full
RS homography matrix Eq. (13) yields global mapping Eq. (23).
Similarly, simplified RS homography matrix Eq. (16) yields a new
globally non-linear mapping and thus updates η(qi) as follows
(detailed derivation in supplemental materials):
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Fig. 4: Comparison of GS homography mapping and RS homog-
raphy mapping.

[
u′i v′i

]>
= η(ui, vi) =

{
α(ui, vi)
β(ui, vi)

where,

α(ui, vi) =
d

e
and β(ui, vi) =

−b±
√
b2 − 4ac

2a
with,

a = A2,(3)qi

b = HGS,(3)qi +A1,(3)qivi −A2,(2)qi

c = −HGS,(2)qi −A1,(2)qivi

d = (HGS,(1) +A1,(1)vi +A2,(1)β(ui, vi))qi

e = (HGS,(3) +A1,(3)vi +A2,(3)β(ui, vi))qi

(24)

Similar to Eq. (23), it also leads to two feasible solutions.

It is important to realize that previous works [4], [21] use multiple
local homographies, that are controlled by both row indexes in the
two images. However, as shown in Fig. 4, η is determined only
by the shared parameters HGS , H1 . . . H7 for all point matches.
Thus, it describes a global and unique 2D mapping from qi to q′i
directly.

Note that η is a nonlinear 2D mapping while the classical GS
homography HGS is a linear one. But since η plays the same role
as HGS , thus, we keep calling η as RS Homography mapping.

Since we choose 13.5pt solver to estimate the RS Homogra-
phy, thus, for consistency, global RS homography mapping for
simplified case Eq. (24) will be used for image alignment.

6.2.3 Selecting the Correct Solution

In Eq. (24), there are two feasible solutions for each pixel in
original image. The solution with the smaller Euclidean distance to
original point before warping is chosen as the correct one. This is
usually the solution which maintains the consistency of the image
registration. We will show through experiments that this is indeed
effective.

6.2.4 Blending

To seamlessly blend the images, a multi-band blending strat-
egy [37], [38] is used.

6.2.5 Correction of Stitched RS Image
After determining the instantaneous-motion parameters by means
of the method described in section 5, an inverse mapping is applied
to the aligned image points in order to remove RS distortions by
compensating camera instantaneous-motion as follows [7]:

qcorrect = K2(I− [ω2]×)q
′ (25)

Note that we correct the RS image after stitching. Another
solution is perform the pre-rectification to the both RS images
after RS homography estimation using ω1 and ω2 respectively,
followed by classical GS image stitching. In our experiments, we
found the choice of ’stitching first’ to work better than the other
and therefore present only those results.

6.3 Uncalibrated Image Stitching
Direct RS image alignment: In image stitching applications,
it is common that the input images are uncalibrated. Consid-
ering that points qi and q′i are the image measurements in
pixels (i.e [ui, vi, 1]) instead of normalized points, Eq. (19)
gives the uncalibrated Himage

RS,i which is defined as follows:
Himage

GS = K2HGSK1
−1, Aimage

1 = K2A1K1
−1 and

Aimage
2 = K2A2K1

−1. K1 and K2 are the calibration matrices
of the first and second camera respectively.

Thus if normalized image points are replaced by the image
measurements in Eq. (19) and Eq. (24), we can estimate Himage

RS,i
by using the 13.5pt method (section 4.3) and align the images
directly in the image space. This means that we can stitch two RS
images without prior knowledge of the calibration matrices K1

and K2.
RS correction with non-linear refinement: However, the de-
termination of the instantaneous-motion parameters from Aimage

1

and Aimage
2 is different from the decomposition method of A1

and A2 described in section 5 since the calibration matrices are
unknown.

Thus, based on the pin-hole camera model, we assume that
principle point is located in the centre of the image. Thus only
the focal length f remains unknown. Now, the problem is to
estimate the focal length f and instantaneous-motions ω1 and ω2

given Himage
GS , Aimage

1 and Aimage
2 . We first set the focal length

as 0.9 times of the maximal dimension of each corresponding
image [33]. By using the direct relative pose and instantaneous-
motion algorithm in section 5, we can roughly estimate the rota-
tion between the two images and angular velocities. Finally, we
perform an iterative refinement to estimate the focal lengths, the
rotation between cameras and instantaneous-motions as follows:

argmin
f1,f2,R0,n0ω1,ω2

=
n∑

i=1

(MRS,ihRS − bi)
2 (26)

With the estimated parameters, an inverse mapping similar to
Eq. (25) is applied to the stitched image directly, as follows:

qcorrect = K2(I− [ω2]×)K2
−1q′ (27)

7 DISCUSSIONS

The strategy which consists in combining 13.5pt and 36pt solvers
offers an efficient and numerically stable solution for the RS
Homography estimation problem. It enables us to compute the
full set of matrices that play, in the case of RS images, the same
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role than the classical GS homography matrix. Relative pose and
instantaneous motion of both cameras can then be retrieved by
decomposing these matrices without a need for any initial guess
to be provided by users.

Nevertheless, the proposed solver is not a minimal one since it
needs more correspondences than specified by the chosen formal-
ism based on constant velocity model which is generally adopted
in the literature being a good compromise between simplicity and
precision. Indeed, 13.5 point correspondences are used instead of
10.

In the last decade, methods based on Grobner bases have been
used successfully to solve several minimal problems in computer
vision [39]. This was favored by the use of automatic generators of
polynomial solvers such as [40] and more recently [41]. However,
as the number of variables and equations grows the process may
become intractable in practice. Although we were not able to
generate a convenient solver directly from our equation system
using [40], a more handcrafted system may potentially lead to a
more minimal solver.

8 EXPERIMENTS

Both the RS homography-based pose estimation (RSH) and im-
age stitching method presented in this paper were evaluated on
synthetic and real data.

8.1 Relative Pose Estimation

8.1.1 Synthetic Data Experiments

Fig. 5: Errors of relative pose estimation with increasing image
noise.

Fig. 6: Errors of relative pose estimation with increasing outlier
rate.

Fig. 7: Errors of relative pose estimation with increasing rotational
speed (a) and translational speed (b).

Fig. 8: Rate of inliers with increasing rotational speed and trans-
lational speed.

Experiment settings. We generated a plane scene with 60
feature points, which was imaged by two RS cameras with 480×
640 image resolution. We set the distance from the plane to the
optical centre of the first camera as 1 unit, and located the second
camera randomly on a sphere around the centre of the plane with
1 unit length radius.

Since the ground truth of the relative pose is known, we
calculated the relative pose error as follow:

• Rotation error: erot = arccos((tr(RR>GT)− 1)/2)
• Translation error: etrans = arccos(t>tGT/(‖t‖ ‖tGT‖))

The results are obtained after averaging the errors over 50 trials
(the default setting is 1p noise, 0% outlier rate, 10 degs/frame and
0.04 units/frame for the rotational and translational speed).

Competing methods. We denote the proposed linear RS ho-
mography solvers using simplified matrix model with RANSAC
verification as 13.5pt-RSH and full matrix model as 36pt-RSH.
The nonlinear refinement described in Eq. (22) is denoted as NR.
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We compared our method with two other methods:

• GSH: Classical GS homography estimation with
RANSAC and decomposition1.

• GSH + GSNR: GS homography RANSAC followed by
nonlinear refinement using GS homography model GSNR
(GS plane-based bundle adjustment described but with
known calibration matrix [29]).

• GSH + RSNR: GS homography RANSAC followed by
nonlinear refinement using GS homography model RSNR
(Eq. (22)).

• 44pt-RSE: RS essential matrix estimation with RANSAC
and decomposition [3].

• 44pt-RSE + NR: RS essential matrix estimation with
RANSAC followed by nonlinear refinement NR (minimiz-
ing Sampson error).

(1) Stability vs Pixel noise: We first tested the stability of the
proposed method in the presence of image noise. We increased the
random Gaussian image noise from 0 to 2p. Results in Fig. 5 show
that both 36pt-RSH and 44pt-RSE present numerical instabilities
with increasing noise level. In contrast, 13.5pt-RSH provides
stable and accurate estimations. Note that the performance of
44pt-RSE is significantly improved after performing NR but
remains worse than 36pt-RSH + NR.

(2) Stability vs Outlier rate: We also tested the impact of
outlier rate on the stability of the GS-based method, the epipolar-
geometry-based method and the proposed method. The outlier
correspondences are created by setting the coordinates of these
outliers randomly within the range of RS images. As shown in
Fig. 6, with increasing outlier rate, 44pt-RSE fails in finding the
correct inlier matches and provides wrong estimations which even
can not be refined by performing NR. Similarly, neither of GSH
+ GSNR and GSH + RSNR can refine the rough estimations
provided by GSH. We interpret this observation as GSH fails in
filtering outliers. Conversely, the proposed 13.5pt-RSH method
obtains significantly more accurate results and shows good outlier
rejection performance in RANSAC.

(3) Accuracy vs Instantaneous velocity: We also evaluated the
performances by increasing the rotational speed from 0 to 20
degs/frame and the translational speed from 0 to 0.08 units/frame
receptively. As shown in Fig. 7, 44pt-RSE + NR, GSH + GSNR
and GSH + RSNR provide large errors with the increasing
instantaneous speed. In contrast, our method obtains obvious
improvements comparing to all the competing methods.

Besides, we investigated the influence of the RS instantaneous-
motions on RANSAC-based determination of inliers. As shown in
Fig.8, with the increase of the camera instantaneous-motion, the
inlier detection rate of GSH, 44pt-RSE and 36pt-RSH decreases
dramatically. In contrast, the proposed 13.5pt-RSH maintains its
good performance in the determination.

8.1.2 Real Data Experiment

For readability, in the following sections, we denote the 13.5pt RS
homography method with RANSAC and non-linear refinement as
RSH (camera poses are final refine by RS bundle adjustment [17])
and GS-based homography with RANSAC and non-linear refine-
ment [29] as GSH.

Fig. 9: Comparison of trajectory estimation (right sides) by using
GSH and RSH on two RS image sequences (examples of input
RS images are shown on the left side).

Fig. 10: Mapping and 3D reconstruction errors by using GSH and
RSH on sequence ’trans’ and ’rot’ respectively.

Fig. 11: Mapping errors by using GSH, APAP, AANAP and RSH
on sequence ’rot1’ and ’rot2’ respectively.
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Fig. 12: Results of synthetic RS images stitching with different methods.

TABLE 1: Error of the poses estimated from rolling shutter
sequences against to ground truth.

sequence seq01 [unit] seq22 [unit]m
GSH 0.903 3.620
RSH 0.199 1.668

TABLE 2: Errors of the trajectory estimation, 2D transformation
and 3D Reconstruction

seq GSH RSH
’trans’ Mapping errors [pixel] 2.824 1.162

Reconstruction errors [unit] 1.833 0.317
’rot’ Mapping errors [pixel] 4.131 2.005

Reconstruction errors [unit] 2.519 0.397

(1) Plane-based trajectory estimation. For this experiment we
used sequence ’01’ and ’22’ from [14] which was captured by a
camera rig consisted of an iPhone4 camera (RS) and a Canon
S95 camera (GS) simultaneously. However, contrarily to [14]
and [16] which require smooth instantaneous-motion input video,
the proposed method can handle large baselines. Thus we just
selected non-successive frames with 9 frames interval as an input
sequence. Since the ground truth can be computed by using the
corresponding frames from GS sequence, we used the method
described in [14] to calculate the pose error. The visual and
quantitative evaluations summarized in Fig. 9 and Table 1 show
that the proposed RSH method performs significantly better than
GSH in both sequences.

(2) Plane-based SfM. We evaluated both GSH and RSH on two
more challenging RS image sequences from [10]: ’trans’ and ’rot’
which are taken with mainly translational and rotational velocities
respectively. Two RS images with the integrated visible chess-
board are chosen from the same sequence to estimate the relative
pose with GSH and RSH. Then we perform a triangulation to
reconstruct the chessboard (note that the pose of a row of RS
image is obtained by using Eq. (2)). Since the ground-truth of the

1. http://www.robots.ox.ac.uk/∼vgg/hzbook/code/

poses are unknown, we do the quantitative comparisons using the
following two methods:

1) Mapping error: average homography mapping errors of
the feature points in the chessboard from the first image to
the second. For each point correspondence, the mapping
error can be computed as: ei = ‖q′i − τ(qi)‖, where τ
is the 2D homogrpahy mapping. Thus, we set τ(qi) =
HGSqi for GSH while τ(qi) = η(qi) for RSH.

2) The reconstruction errors of the chessboard (each recon-
structed 3D point is spatially aligned with the ground-
truth, by minimizing the sum of all squared point-to-point
distances).

The results are presented in Fig. 10 and Table 2 and show that
RSH obtains significantly better results compared to GSH in both
sequences.

8.2 Image stitching
8.2.1 Compared Methods
The image stitching experiments were conducted under the fol-
lowing settings:

1) The input images are uncalibrated (calibrated matrices
unavailable).

2) The input images are from unordered set where the
sequence order are unavailable (large baselines).

Note that these two settings are common in the real applica-
tions [22]. Thus, the compared methods should able to align two
uncalibrated and unordered images.

The compared methods can be divided into five categories:
1) GS-based homography method. The proposed methods RSH
were compared to GS homography methods such as GSH (Au-
toStitch) [22].
2) Commercial softwares. We also compared our methods
to well-known commercial image editing applications such as
ICE [23] and Photoshop [24].
3) RS video methods. Video stabilization techniques using ho-
mography transformation by assuming scene is approximately in
one plane or at infinity, are similar to the working assumption of
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Fig. 13: Results of real uncalibrated RS images stitching with different methods.

image stitching. Therefore, video stabilization methods [4], [21],
[43] for RS cameras are potentially suitable for image stitching
application. However, [4] requires prior calibration and ordered
video frames as input. Although [21], [43] are calibration-free
methods, but they are both video-based method which violate
the unordered images setting. Similarly, method in [44] generates
panoramas from RS videos by assuming that the global motion
of each two consecutive frames is affine. Therefore, RS video
methods are unable to handle our stitching experiments.

4) Pre-rectified stitching. One solution to solve the RS stitching
problem consists in performing a GS-based image stitching of pre-
rectified images using RS rectification methods are such as [5],

[6], [7], [16], [27], [45]. Unfortunately, none of these methods
can satisfy both above-mentioned conditions, thus can not be
compared in our image stitching experiments.
5) Spatially-variant homography warping. Recent image warp-
ing techniques apply spatially-variant homography model to han-
dle the parallax in stitching. As shown in Eq. (13), since RS
homography can be explained as multiple GS homographies,
image stitching methods such as APAP [25] and AANAP [26]
using piecewise homographies are supposed to be able to handle
the RS stitching case.

Through the discussions above, we compared the proposed method
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Fig. 14: Two examples of stitching real RS images from [42].

RSH to GSH, ICE, Photoshop [24] and APAP in RS stitching
experiments.

8.2.2 Synthetic RS Images
(1) Quantitative comparison. We first compared the perfor-
mances of GSH, APAP, AANAP and RSH on two synthetic
RS image sequences with pure rotation from [4]: ’rot1’(camera
aim changing) and ’rot2’(both changing camera aim, and in-plane
rotation). In order to evaluate the stability of all the methods with
different instantaneous-motions, we chose the first frame of each
sequence as a reference, then we transformed and stitched all the
other frames to it. We kept the number of input feature matches
the same for all the three methods and calculated the average
transformation errors. The results in Fig. 11 show that in the
sequence ’rot’ which was taken with only aim changed, all the
three methods obtain similar performances while RSH is slightly
better than GSH, APAP and AANAP in all the groups. However,
in the sequencer ’rot2’ which was taken with in-plane rotation,
the transformation errors of GSH, APAP and AANAP increase
dramatically, while RSH performs obviously better.

(2) Visual comparison. We visually compared the stitching results
of Autostitch, APAP, AANAP, ICE, Photoshop and RSH on
’rot2’ sequence by randomly choosing two frames. Fig. 12 shows
that for two images with similar instantaneous-motions (first row),
all methods provide visually good results. Nevertheless, for the
pairs with distinct instantaneous-motions (second and third row
in Fig. 12), obvious stitching defects appear (e.g. ghosting and
misalignment) except with the proposed method RSH. Although
strong RS effect remain after stitching, our method can further
remove the distortion.

8.2.3 Real RS Images
(1) Real RS image sets. The first input image pair is from a RS
image sequence ’indicator’ [4] taken by an iPhone4. The second
input is from a self-capture dataset ’facade’ with strong RS effects.
In Fig. 13, we can observe that AutoStitch produces blur on
stitched images while the results from APAP are slightly better.
The result of ICE in ’indicator’ dataset is visually acceptable

although significant misalignments can be observed along the pole.
For the ’facade’ dataset, ICE gives a dramatically mismatched
result. Photoshop performances are visually good in both datasets,
however, some wrong alignments are still present on the overlap
region such as the pole in the ’indicator’ dataset and the eave in
the ’facade’ dataset. In contrast, RSH achieves the best results.

The third image pair is from [42] which captures a urban scene
under fast rotation. The results in Fig. 14 show that AutoStitch
fails in image alignment. APAP and AANAP provide blur in
regions with lack of point-matches. ICE and Photoshop provide
visually pleasant results, however, geometry inconsistencies or
’object’s fracture’ are present along the stitching seams. In con-
trast, the proposed method RSH obtains the best results.

As shown in Fig. 13 and 14, after stitching, our method can
remove the distortions and offers a much more visually pleasant
stitching images as final outputs.

(2) Effect of number and distribution of point matches on
stitching quality. One of the main disadvantage of multiple
homograpies methods (APAP and ANNAP) is a sufficient number
of point-matches that are uniformly distributed on image plan.

In this experiment, we first evaluated the stitching quality with
varying number of point-matches by decreasing the number of
point correspondences. We conducted this evaluations on ’facade’
dataset. Results in Fig. 15 show that the multiple local homo-
graphies (spatially-varying warping) methods such as APAP and
AANAP are sensitive to the number of input point-matches. With
the decreasing of input matches, the quality of stitching results
with APAP and AANAP declines dramatically. In contrast, the
global methods GSH and RSH show a relative high stability.

Besides, we evaluated all the stitching methods by using two
real RS images from [16], which have a large overlap region. As
shown in Fig. 16, the inliers between the two images distribute
densely in the right part of the two images while being limited to
the white facade on the left part. The stitching results show that
APAP and AANAP suffer from this unbalanced point-matches
distribution and provide significant distortions on the stitched
regions of the ’white facade’. Slight geometrical inconsistencies
are present along the stitching seams of ICE and Photoshop’s
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Fig. 15: Evaluation of stitching qualities by decreasing the number of input point-matches from 100% inlier to 20%.

results. In contrast, the proposed method RSH obtains the best
result.

8.3 Running Time

The experiments were conducted on an i5 CPU at 2.8GHz with 4G
RAM. On average, it took around 3.35s for GSH, 13.5s for APAP
and 6.5s for RSH(0.05s for 13.5pt solver running per time, 0.16s
for the non-linear refinement, 5.9s for the image warping, blending
and RS correction). Since the proposed method was implemented
in MATLAB, a significant improvement can be expected when
using C++.

9 CONCLUSION

The present work is the first to address the homography for the
RS case. We first defined a theoretical RS Homography matrix
and proposed a 36pt solver to retrieve it from an image pair.
Then we derived a practical homography matrix and the associated
13.5pt linear solver which is more suited for RANSAC based
applications. The RS homography was used in two well-known
homography-based applications: relative pose estimation and im-
age stitching. The experiment results show that the proposed
method is superior to the state-of-the-art techniques and some
well-known commercial image editing applications.

ACKNOWLEDGMENTS

This work has been sponsored by the French government research
program ”Investissements d’Avenir” through the IDEX-ISITE
initiative 16-IDEX-0001 (CAP 20-25), the IMobS3 Laboratory

of Excellence (ANR-10-LABX-16-01) and the RobotEx Equip-
ment of Excellence (ANR-10-EQPX-44). This research was also
financed by the European Union through the Regional Competi-
tiveness and Employment program -2014-2020- (ERDF – AURA
region) and by the AURA region.

REFERENCES

[1] J. Linkemann and B. Weber, “Global shutter, rolling shut-
ter—functionality and characteristics of two exposure methods (shutter
variants),” White Paper, 2014.

[2] C. Albl, Z. Kukelova, V. Larsson, and T. Pajdla, “Rolling shutter camera
absolute pose,” PAMI, 2019.

[3] Y. Dai, H. Li, and L. Kneip, “Rolling shutter camera relative pose:
generalized epipolar geometry,” in CVPR, 2016.

[4] P.-E. Forssén and E. Ringaby, “Rectifying rolling shutter video from
hand-held devices,” in CVPR, 2010.

[5] V. Rengarajan, A. N. Rajagopalan, and R. Aravind, “From bows to
arrows: Rolling shutter rectification of urban scenes,” in CVPR, 2016.

[6] P. Purkait, C. Zach, and A. Leonardis, “Rolling shutter correction in
manhattan world,” in ICCV, 2017.

[7] Y. Lao and O. Ait-Aider, “A robust method for strong rolling shutter
effects correction using lines with automatic feature selection,” in CVPR,
2018.

[8] O. Saurer, M. Pollefeys, and G. H. Lee, “A minimal solution to the rolling
shutter pose estimation problem,” in IROS, 2015.

[9] O. Ait-Aider, N. Andreff, J. M. Lavest, and P. Martinet, “Simultaneous
object pose and velocity computation using a single view from a rolling
shutter camera,” in ECCV, 2006.

[10] Y. Lao, O. Ait-Aider, and A. Bartoli, “Rolling shutter pose and ego-
motion estimation using shape-from-template,” in ECCV, 2018.

[11] O. Saurer, K. Koser, J.-Y. Bouguet, and M. Pollefeys, “Rolling Shutter
Stereo,” ICCV, 2013.

[12] O. Saurer, M. Pollefeys, and G. Hee Lee, “Sparse to dense 3d reconstruc-
tion from rolling shutter images,” in CVPR, 2016.

[13] O. Ait-Aider and F. Berry, “Structure and kinematics triangulation with
a rolling shutter stereo rig,” in ICCV, 2009.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Fig. 16: (a) Two real RS images from [16] as input. (b) For fair comparisons, APAP, AANAP and RSH all using the same point-matches
produced by GS homography RANSAC (inliers in pink, outliers in green). (c) Stitching results.

[14] J. Hedborg, P.-E. Forssen, M. Felsberg, and E. Ringaby, “Rolling shutter
bundle adjustment,” in CVPR, 2012.

[15] C. Albl, A. Sugimoto, and T. Pajdla, “Degeneracies in rolling shutter
sfm,” in ECCV, 2016.

[16] B. Zhuang, L.-F. Cheong, and G. H. Lee, “Rolling-shutter-aware differ-
ential sfm and image rectification,” in ICCV, 2017.

[17] Y. Lao, O. Ait-Aider, and H. Araujo, “Robustified structure from mo-
tion with rolling-shutter camera using straightness constraint,” Pattern
Recognition Letters, 2018.

[18] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution
classification for the perspective-three-point problem,” PAMI, 2003.

[19] D. Nistér, “An efficient solution to the five-point relative pose problem,”
PAMI, 2004.

[20] M. Meingast, C. Geyer, and S. Sastry, “Geometric models of rolling-
shutter cameras,” in OmniVis WS, 2005.

[21] M. Grundmann, V. Kwatra, D. Castro, and I. Essa, “Calibration-free
rolling shutter removal,” in ICCP, 2012.

[22] M. Brown and D. G. Lowe, “Automatic panoramic image stitching using
invariant features,” IJCV, 2007.

[23] “Image composite editor - microsoft research.” [Online]. Avail-
able: https://www.microsoft.com/en-us/research/product/computational-
photography-applications/image-composite-editor/

[24] “Adobe photoshop cc.” [Online]. Available:
https://www.adobe.com/products/photoshop.html

[25] J. Zaragoza, T.-J. Chin, M. S. Brown, and D. Suter, “As-projective-as-
possible image stitching with moving dlt,” in PAMI, 2014.

[26] C.-C. Lin, S. U. Pankanti, K. Natesan Ramamurthy, and A. Y. Aravkin,
“Adaptive as-natural-as-possible image stitching,” in CVPR, 2015.

[27] S. Vasu, M. M. MR, and A. Rajagopalan, “Occlusion-aware rolling
shutter rectification of 3d scenes,” in CVPR, 2018.

[28] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

[29] Z. Zhou, H. Jin, and Y. Ma, “Robust plane-based structure from motion,”
in CVPR, 2012.

[30] O. Saurer, P. Vasseur, R. Boutteau, C. Demonceaux, M. Pollefeys,
and F. Fraundorfer, “Homography based egomotion estimation with a
common direction,” PAMI, 2017.

[31] B. Klingner, D. Martin, and J. Roseborough, “Street view motion-from-
structure-from-motion,” in ICCV, 2013.

[32] E. Ito and T. Okatani, “Self-calibration-based approach to critical motion
sequences of rolling-shutter structure from motion,” in CVPR.

[33] P. Purkait and C. Zach, “Minimal solvers for monocular rolling shutter
compensation under ackermann motion,” in WACV, 2018.

[34] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, 1981.

[35] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An invitation to 3-d vision:
from images to geometric models. Springer, 2012.

[36] E. Malis and M. Vargas, “Deeper understanding of the homography
decomposition for vision-based control,” Ph.D. dissertation, INRIA,
2007.

[37] P. J. Burt and E. H. Adelson, “A multiresolution spline with application
to image mosaics,” ACM Transactions on Graphics (TOG), vol. 2, no. 4,
pp. 217–236, 1983.

[38] M. Brown, D. G. Lowe et al., “Recognising panoramas.” in ICCV, vol. 3,
2003, p. 1218.
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