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ABSTRACT
To augment the TV show in post-production, we propose a novel
solution to uncalibrated camera small motion tracking in a dynamic
scene that simultaneously reconstructs the sparse 3D scene and
computes camera poses and focal lengths of each frame. The criti-
cal elements of our approach are a robust image feature tracking
strategy in dynamic scenes followed by automatic local-window
frames slicing, local and global bundle adjustment optimization
initialized by a homography-based uncalibrated relative rotation
solver. The proposed method allows us to add the virtual objects
(elements) into the reconstructed 3D scene, then composite them
back into the original shot while perfectly matched perspective and
appear seamless.

The evaluation of a large variety of real TV show sequences
demonstrates the merits of our method against state-of-the-art
works and commercial software products.
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Figure 1: (a) An uncalibrated sequence of TV show shot with
small camera motion in dynamic scene (large area of moving
objects). (b) The proposed method in this paper can simul-
taneously reconstruct the sparse 3D scene and computes
camera poses, focal lengths of each frame. (c) Augmentation
results (reproject a virtual book cover back to the picture
frame on the cabinet) produced by commercial camera track-
ing software Boujou [1] (top), state-of-the-art uncalibrated
small motion tracking approach [8] (middle) and ourmethod
(bottom).

1 INTRODUCTION
Augmenting the sequence of "shots" by producing visual effects
(VFX) is a well-known and vital task in filmmaking. The main idea
is to enhance the camera captured the real world by accurate 3D
registration of virtual and real objects, which is close to augmented
reality (AR). An accurate camera tracking is essential to convinc-
ingly composite Computer Generated (CG) images onto live-action
footage by ensuring that the virtual camera in a render matches the
movement of the actual camera. Thus, camera tracking (or match-
move) is a crucial task and one of the first to perform in the VFX
pipeline.

Recently, augmenting TV shows such as variety shows, series,
sport event broadcasting, and animation becomes a new but hot
topic for TV station [9, 16, 37]. In the field of movie VFX production
or mobile phone AR, camera pre-calibration and multiple sensors
information are available without mention that the camera baseline
(translation) is usually significant. In contrast, the shot of a TV show
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is common with (i) uncalibrated camera with dramatical lens zoom,
(ii) highly dynamic scene, and (iii) extreme narrow-baseline motion.
These differences make the classical camera tracking approaches
fail when using a TV show as input. Therefore, the task of TV show
augmentation becomes an open but challenging problem.

This paper focuses on augmenting TV show shots by using a
novel uncalibrated camera small motion tracking in the dynamic
scene. Note that despite multiple ways to augment input shots,
throughout this work, we focus on one of the most common aug-
mentation tasks, namely, inserting virtual objects into the original
shot while perfectly matched perspective and appear seamless.

1.1 Related Work and Motivations
Inserting virtual objects into a real shot requires the object’s lo-
cation must appear seamlessly as the camera motion. The most
common solution is camera tracking with estimations of all inter-
nal and external parameters (focal lengths and camera poses etc.)
with an adequate degree of stability. The existing works can be
divided into three major categories:
(1) Additional Information Assistance. BBC proposed an on-set
pre-visualization system called Free-D [28] by sticking barcoded
markers on the studio ceiling. Schweighofer et al. use multiple
cameras rig to recover the camera motion with pre-calibration [23].
Similarly, Yu and Kim [34] proposed using an auxiliary camera
that faces the ground to estimate the motion of the main shooting
camera and 3D points in a dynamic scene. Besides, an internal
measurement unit (IMU) that can assist camera tracking has been
reported in [11]. However, all these approaches fail in handling TV
show shots since the post-produce is based on post-edited sequences
without calibration information such as focal length of each frame
or measurements from auxiliary cameras and IMU.
(2) Structure-from-Motion The most popular way of recover
the motion of a moving camera is using structure-from-motion
(SfM) algorithms [36]. SfM is an active field of computer vision and
robotic communities, with a large number of works on accurate 2D
feature tracking [6], visual 3D scene reconstruction [36] and visual
simultaneous localization and mapping (SLAM) [27]. The majority
of SfM assume the multiple views are well pre-calibrated with pre-
knowledge about the focal length and lens distortion [18, 30]. This
dependency on pre-calibration defeats their feasibilities to the TV
show. Recently, some uncalibrated SfM methods are presented such
as VisualSfM [31], COLMAP [22] and OpenMVG [17]. Nonetheless,
note that all the classical SfM methods are based on epipolar geom-
etry, which first estimates the fundamental matrix and follows its
decomposition into the relative pose. This pipeline requires a wide
baseline to ensure the numerical stability of epipolar solving [36].
Unfortunately, TV show shots are commonly under small camera
motion, leading to an extraordinary narrow baseline and defeating
conventional SfM solutions.
3) Uncalibrated AR. Note that uncalibrated AR solution solve
similar task in this paper such as [14, 24, 26]. However, all these
approaches assume wide translation and static scenes while the TV
show shots are with highly dynamic scenes and small motion.

4) CommercialMatchmove Software. In themovie post-production
stage, camera tracking can be achieved by using commercial match-
move software [7] such as Boujou [1], ACTS [35] and Camera-
Tracker tool [5] in Adobe After Effect. However, even such com-
mercial software fails to track the camera robustly in a dynamic
scene where a moving foreground object such as a real actor occu-
pies a large part of the background that frequently occurs in the
TV show.
5) Structure-from-Small-Motion (SfSM). Recently, 3D recon-
struction from small motion calibrated sequence was first studied
in [33] and then extends to rolling shutter case in [12]. One of the
most closed existing works to this paper is the depth from uncali-
brated small motion clip (DfUSMC) [8], which is feasible to handle
the uncalibrated small camera motion in the TV show. However,
note that all [8, 12, 33] assume a rigid scene without considering
the captured moving objects, which does not hold in a TV show
shot.

Motivations. From the discussion above, we found out that to
augment TV show robustly, an uncalibrated camera small motion
tracking method in highly dynamic scenes is still absent in current
literature. Such a solution could benefit the post-production and
post-edit of TV show or even the social sharing short-form videos.

1.2 Contributions
To augment the TV show in post-production, we propose a novel
solution to tackle uncalibrated camera small motion tracking in
dynamic scenes, enabling reconstructing the sparse 3D scene si-
multaneously and computing camera poses, focal lengths of each
frame. The key elements of our approach are a robust image fea-
ture tracking strategy in dynamic scenes followed by automatic
local-window frames slicing, local and global bundle adjustment
optimization initialized by a homography-based uncalibrated rela-
tive rotation solver. The proposed method allows users to add the
virtual objects (elements) into the reconstructed 3D scene, then
composite them back into the original shot while perfectly matched
perspective and appear seamless. We evaluate the proposed solu-
tion on an extensive data set of 1000 real shots consisted of variety
shows, series, and animations collected from the industry. Our main
contributions can be summarized as follows:

• We present a novel uncalibrated camera small motion track-
ing approach for dynamic scenes called Dynamic-UCSMT.
It can compute the 3D scene, camera pose, and focal length
of each frame precisely by giving an uncalibrated TV show
shot with even small motion.

• We propose a completed pipeline to augment the TV show
shot in the post-production step by using Dynamic-UCSMT.
We collected a large dataset of real TV show shots, and
extensive evaluations demonstrate the superiority of our
method to existing works and commercial software. The
dataset will be publicly available in the future as we hope
interest to the research community.
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Figure 2: TV show video augmentation pipeline: (1) We first perform a static feature tracking followed by automatic local-
window frames slicing (section. 2.2.2). Then a local BA to recover the 3D points and camera motion within local-window frames
(section. 2.2.3), which is initialized by an analytical homography-based uncalibrated relative rotation solver (section. 2.2.4).
Finally we refine the sparse 3D reconstruction, camera poses and focal lengths of the whole frames with a global BA (sec-
tion. 2.2.3). (2) In the end, we augment the original video by placing virtual objects into the reconstructed 3D scene (section. 2.3.1)
and reprojecting in each frame based on the recovered camera motion (section. 2.3.2).
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Figure 3: Cameramodel for smallmotion (section. 2.2.1). A 3D
point P𝑗 is projected into the 1st and 𝑖th cameras with distinct
focal lengths 𝑓1 and 𝑓𝑖 as 2D points q𝑗1 and q𝑗

𝑖
respectively.

2 OUR SOLUTION
2.1 Overview
Fig. 2 illustrates a conceptual overview of the proposed method,
which consists of twomain steps: By given the original uncalibrated
video, (1) the 3D scene, camera 6D motion, and focal length of each
frame is estimated by performing dynamic-UCSMT. (2) Then, we
augment the original video by inserting virtual objects into the
reconstructed 3D environment and projecting them based on the
recovered camera poses and focal lengths.

2.2 Dynamic-UCSMT
2.2.1 Camera Model for Small Motion. Existing small motion
tracking approaches [12, 33] assumes a well-calibrated camera with
accurate and constant focal length. However, in TV show shots, the
focal length can significantly change within few frames without
value recorded, violating the pre-calibrated assumption. There-
fore, the camera tracking in augmenting the TV show should self-
calibrate the focal length in each frame. Note that different from

the camera tracking solutions such as Boujou [1] and [8] recover
the focal lengths and lens distortion parameters simultaneously.
In this paper, we propose to use the perspective projection model
by ignoring lens distortion since the modern camera lenses used
in TV shows are developed to have slight distortion according
to [2]. This is also verified by the observations in the experiments
that the estimated radial distortion parameters from [1, 8] are ex-
tremely small, which leads to distortion less than 1 pixel. Thus, a
3D point P𝑗 =

[
𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗

]
is projected into 𝑖th camera as a 2D point

q𝑗
𝑖
=

[
𝑢
𝑗
𝑖
, 𝑣

𝑗
𝑖

]
as follows:

𝑠
𝑗
𝑖

[
q𝑗
𝑖
, 1
]⊤

= K𝑖
[
R𝑖 t𝑖

] [
P𝑗 , 1

]⊤
with K𝑖 =


𝑓𝑖 0 𝑐𝑥
0 𝑓𝑖 𝑐𝑦
0 0 1


(1)

where 𝑠 𝑗
𝑖
is a scale factor, K𝑖 is the calibration matrix of 𝑖th camera

that contains focal length 𝑓𝑖 and principal points 𝑐𝑥 and 𝑐𝑦 , R𝑖 and
t𝑖 describe the camera pose w.r.t. the world coordinate system.

Since small motion leads to a small baseline and makes the con-
ventional SfM approaches fail, Yu et al. [33] proposes to use small
angle approximation for the camera rotation parameterization. This
strategy enables reducing the complexity in the bundle adjustment
step, which has been validated by [8, 12]. Thus, based on this insight
as mentioned above, we parameterize the camera pose as:

R𝑖 =

1 −𝑟𝑧

𝑖
𝑟
𝑦

𝑖
𝑟𝑧
𝑖

1 −𝑟𝑥
𝑖

−𝑟𝑦
𝑖

𝑟𝑥
𝑖

1

 , t𝑖 =

𝑡𝑥
𝑖

𝑡
𝑦

𝑖
𝑡𝑧
𝑖

 (2)

where r𝑖 =
[
𝑟𝑥
𝑖
, 𝑟

𝑦

𝑖
, 𝑟𝑧
𝑖

]⊤ and t𝑖 =
[
𝑡𝑥
𝑖
, 𝑡
𝑦

𝑖
, 𝑡𝑧
𝑖

]⊤ are rotation vector
and translation vector of 𝑖th camera.
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Figure 4: (a) Conventional KLT tracking result on an input
TV show. (b) Outliers in moving objects filtered by object de-
tection (yellow bounding boxes). (c) Feature tracking results
produced by [8]. (d) Feature tracking results produced by [1].

2.2.2 Feature Tracking and Local-window Slicing in Dy-
namic Scene. The narrow baseline in the TV show scene makes
the feature tracking easier, but on the other hand, a large number
of dynamic humans captured in the input video causes failure of
classical camera tracking methods.

Feature Tracking. In the first frame, we use Harris corner [10]
and Kanade-lucas-Tomasi (KLT) tracker [29] to match the features
over the sequence. Note that [1, 8] using epipolar geometry with
RANSAC loop to filter the dynamic points in moving objects [19].
However, since the human close-up shot is common in the TV
show, the majority of the feature matches could be detected on
the dynamic objects, which defeats the RANSAC performance [20].
To address this problem, we utilize dynamic object detection to
assist the dynamic feature filtering process. Specifically, as shown
in Fig. 4(b):

(1) After the KLT tracking, we perform YOLOv3 [21] to detect
humans in the first frame and remove the feature matches
within the detected bounding boxes.

(2) In the next step, since small translation within the short
local-window sequence, we compute the homography be-
tween consecutive frames to filter out the remained outliers.
Note that with small camera motion, we found out that the
homography-based computation achieves significant numer-
ical stability to epipolar-based estimation, which is used
in [1, 12].

The extensive experiments (e.g., Fig. 4) in real TV show sequences
demonstrate the superiority of our feature tracking method in the
dynamic scene.

Local-window Slicing. Based on the observation that the survival
rate of detected features is low over the whole sequence raised
by TV show shot styles such as bokeh, faster zoom, and reaction
shot, and thus affects the final camera tracking quality. We conduct
a sliding window to track the camera motion locally tanks to an
automatic local-window slicing algorithm. As shown in Fig. 5, We

... ... ...

Overleap

Local-window #1   local BA Local-window #2   local BA

... ...

All frames   global BA

Figure 5: Illustration of automatic local-window slicing algo-
rithm.

assume the frame I𝑘 as the first frame a local window sequence.
Then the feature survival rate of 𝑠th frame is defined as follow:

𝑠𝑟𝑘𝑠 =
f n (I𝑠 )
f n (I𝑘 )

(3)

where f n (I𝑘 ) is the number of detected features in frame I𝑘 and
f n (I𝑠 ) is the number of successfully tracked features in frame I𝑠 .
The slicing algorithm follows two steps:

(1) We track the feature points from the𝑘th and compute the sur-
vival rate over each frame sequentially. Once 𝑠𝑟𝑘𝑠 is smaller
than a threshold 𝜎 , we slice the 𝑘th to 𝑠th as a local-window
sequence as input of a local BA (section. 2.2.3).

(2) To ensure the continuity over the whole sequence, we set the
(𝑠 − 𝑜)th frame as the first frame of the next local-window,
which leads to overlap with 𝑜 frames length between two
consecutive local-windows.

2.2.3 Bundle Adjustment. BA is a non-linear optimization tech-
nique in 3D vision which iteratively refines the camera poses and
3D points simultaneously [30]. With the proposed automatic local-
window slicing algorithm, we design a sliding-window BA para-
digm with local and global optimization.

Local BA. We first formulate a local BA to compute the camera
poses, focal lengths, and 3D points observed by the frames in local-
window sequence by minimizing the reprojection error as follows:

argmin
f,r,t,P

𝑠∑︁
𝑖=𝑘

𝑀𝑘→𝑠∑︁
𝑗=1




q𝑗𝑖 − 𝜋 (K𝑖
[
R𝑖 t𝑖

] [
P𝑗 , 1

]⊤


2
with, 𝜋 ( [𝑥,𝑦, 𝑧]⊤) = [𝑥/𝑧,𝑦/𝑧]

(4)

where 𝑘 and 𝑠 is the first and last frame of the local-window se-
quence, 𝑀𝑘→𝑠 is the number of survival features. f is the set of
local lengths over all frames, while r and t are the sets of rotation
and translation vectors from (𝑘 + 1)th to 𝑠th frame (the pose of the
𝑘th frame is fixed as [I, 0]). P is the set of 3D point coordinates. The
initialization of f, r, t and P is introduced in section. 2.2.4.

Global BA. To obtain an accurate estimation globally, based on the
results of local BAs, we use a global BA to refine the camera motion,
focal lengths, and 3D scene. To this end, we first unify all the local-
window sequences into the world coordinate system by using the
overlapping (𝑜 frames). Thus we have the rough estimation of f, r, t
and P from all the local-windows as initialization values to the cost
function:



Focal lengths:

Figure 6: Geometric model for uncalibrated homography-
based relative rotation and focal lengths solver.

argmin
f,r,t,P

𝑁∑︁
𝑖=1

𝑀1→𝑁∑︁
𝑗=1

𝑣𝑖 𝑗




q𝑗𝑖 − 𝜋 (K𝑖
[
R𝑖 t𝑖

]
P𝑗 )




2
with, 𝑣

𝑗
𝑖
=

{
1 if P𝑗 is observed by i-th frame
0 if P𝑗 is not observed by i-th frame

(5)

where 𝑁 is the number of all frames,𝑀1→𝑁 is the number of fea-
tures once observed by at least one local-window sequence. 𝑣 𝑗

𝑖
is

the visibility indicator that shows if a 3D point P𝑗 is captured by
𝑖th frame or not.

BAOptimization and discussions.Weuse the Levenberg-Marquardt
(LM) algorithm to refine the camera poses, focal lengths, and 3D
points by minimizing the cost functions in Eq. (4) and (5). We derive
the closed-form Jacobian matrix in both local and global BAs via
chain rule to speed up the iterative optimization. The proposed BAs
have two main advantages over the BA approaches used in existing
camera small motion tracking solutions:

(1) Our formulations in Eq. (4) and (5) have a significantly lower
number of parameters compared to the numbers in [8, 12]
thanks to ignoring the radial distortion and rolling shutter
effect, which are not apparent in TV show. This simplification
and a more reasonable initialization strategy enable our BAs
to converge during our experiments rapidly.

(2) We found out that in the proposed local and global BA
scheme, which can track the reliable features along the whole
sequence, thus can robustly recover the accurate 3D recon-
struction, camera poses and focal lengths in the highly dy-
namic scenes that fairly common in TV show compared to
the all-frames optimization used in [8, 12].

2.2.4 Initialization. The initial parameters of the BAs are vital
to the performance of non-linear optimization. [8] use all-zeros
setting to the camera poses and a rough guess to the focal lengths
based on the image size, which we found out that could easily fail
in TV show shot with extremely short translation but large lens
zoom and rotation. In contrast, to ensure the robustness of camera
tracking, we present a novel linear solver to compute the relative
rotation and focal lengths of two uncalibrated cameras to initial
the parameters in our local BA. The initialization of global is based

on the results from all the local BAs.

Homography-based Uncalibrated Relative Rotation Solver.
Based on the fact that two views epipolar-based approach is unsta-
ble for small baseline [8], we can ignore the translation between
two consecutive views and compute their relative rotation and fo-
cal lengths simultaneously with a analytical solution. As shown in
Fig. 6, let the two frames I1 and I2 hold for pure rotation assumption
which leads to a homography transformation H2

1 consisted by the
calibration matrices K1, K2 (where only focal lengths 𝑓1 and 𝑓2 are
unknown parameters) and the relative rotation R21. Thus, based on
Eq. (1) and (2), we obtain the definition of H2

1 as follows:

H2
1 = K1R21K

⊤
2 =


𝐻11 𝐻12 𝐻13
𝐻21 𝐻22 𝐻23
𝐻31 𝐻32 𝐻33



with,



𝐻11 =
𝑓1−𝑐𝑥 ∗𝑟𝑦

𝑓2

𝐻12 =
𝑐𝑥 ∗𝑟𝑥−𝑓1∗𝑟𝑧

𝑓2

𝐻13 = 𝑐𝑥 + 𝑓1𝑟𝑦 − 𝑐𝑦 (𝑐𝑥𝑟𝑥−𝑓1𝑟𝑧 )
𝑓2

− 𝑐𝑥 ∗(𝑓1−𝑐𝑥 ∗𝑟𝑦 )
𝑓2

𝐻21 =
−𝑐𝑦𝑟𝑦+𝑓1𝑟𝑧

𝑓2

𝐻22 =
𝑓1+𝑐𝑦𝑟𝑥

𝑓2

𝐻23 = 𝑐𝑦 − 𝑓1𝑟𝑥 − 𝑐𝑥 (𝑐𝑦𝑟𝑦−𝑓1𝑟𝑧 )
𝑓2

− 𝑐𝑦 (𝑓1+𝑐𝑦𝑟𝑥 )
𝑓2

𝐻31 =
−𝑟𝑦
𝑓2

𝐻32 =
𝑟𝑥
𝑓2

𝐻33 =
𝑐𝑥𝑟𝑦

𝑓2
− 𝑐𝑦𝑟𝑥

𝑓2
+ 1

(6)

where 𝐻2
1 can be further normalized by forcing 𝐻33 to 1. Therefore,

with 4 feature-matches obtained from the feature tracking step (sec-
tion. 2.2.2), we can compute the values of 𝐻11, 𝐻12, ...,𝐻32 in H2

1 [3]
and obtain a polynomial system with 8 equations and 5 unknown
parameters (𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧 , 𝑓1 and 𝑓2). Thanks to the automatic Grobner
basis solver generators such as [13, 15], the linear solver to the
homography-based uncalibrated relative rotation can be obtained.

Initialization Setting. Finally, we can initialize parameters for
local BA by setting the rotation vectors and focal lengths as the re-
sults of linear uncalibrated relative rotation solver described above,
translation vectors to zero whichmentioned to be reasonable for the
small motion [33], and 3D point coordinates as P̂𝑗 = 𝑧 𝑗K−1

𝑘
[q𝑗

𝑘
, 1]⊤

where 𝑧 𝑗 is a random depth value.

2.3 Augment TV Show Shot
Based on the recovered camera motion, focal lengths, and 3D scene,
we can augment the video by inserting 3D virtual objects into the
reconstructed scene followed by projection in each frame. It is
essential to realize that, in this paper, we focus on the camera small
tracking problem, which is the cornerstone for the post-process,
such as augmenting the TV show. Therefore, we provide a brief
description of the video augmentation.

2.3.1 Virtual Objects Insert. As shown in Fig. 7(a), the user can
easily place virtual objects in the user-defined location within the
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Figure 7: (a) An example of a virtual object insert in the re-
constructed 3D scene. An example of occlusion handling
pipeline: (b) we use [4] to segment the human. (c) Virtual
object reprojection by considering the depth and the intersec-
tion with human segmentation masks. (d) The reprojected
virtual objects are rendered into each frame.

reconstructed 3D scene. Note that inserted virtual objects can be
either 2D or 3D.

2.3.2 Virtual Objects Reprojection and Occlusion Handling.
To composite the inserted virtual objects back into the original
shot while perfectly matched perspective and appear seamless, we
conduct a virtual objects projection and follow by an occlusion
handling procedure.

Virtual Objects reprojection. After inserting the virtual objects,
we can then augment the whole video sequence by reprojecting
inserted virtual objects back to each frame based on the recovered
camera poses by using OpenGL [25].

Occlusion handling. Based on the observations in our experi-
ments, the human movement causes most of the virtual objects’
occlusion. Thus, we propose the following pipeline to hide virtual
objects behind real things adaptively:

(1) In each frame, we check if the detected human bounding
boxes provided by [21] have an intersection with the repro-
jected virtual objects. If so, as shown in Fig. 7(b), we use
DeeplabV3+ [4] to extract the accurate masks of human.

(2) The depth of detected humans is roughly estimated by us-
ing [32]. If virtual objects’ depths are larger than the human
depth, as shown in Fig. 7(b), we cut the reprojected virtual ob-
jects based on the intersection between them and the human
masks.

3 EXPERIMENTS
3.1 Implementation
We run our method on an Intel(R) Xeon(R) Gold 5220 CPU with 8G
RAM. We set the threshold of survival rate of successful tracked
feature 𝜎 as 0.3 and the number of overlapping frames between two
local-windows 𝑜 as 5. For a TV show shot of 1280 × 720 resolution,

our solution takes to process. Specifically, we spend to feature
tracking, BAs, final reprojection, and render.

3.2 Dataset and Comparison Methods
Dataset.We assemble a comprehensive dataset of 1000 real produc-
tion shots (3s 10s, 25fps) collected from real variety shows, series,
and animations of Mango TV1. To know the strength and weak-
nesses of a method in different situations, we carefully selected TV
shots with 5 categories based on camera motion and scene type,
namely, (I) interview, (II) quick rotation, (III) faster zooming, (IV)
small translation, and (V) crowd. We will release our dataset to the
research community after acceptance.

Comparison Methods. We denote the proposed camera tracking
method as D-UCSMT. We compared our method with two other
methods:

• DfUSMC2: Depth from uncalibrated small motion clip [8]
which address the uncalibrated camera small motion problem
that is strongly related to this paper.

• Homo3: Since the narrow baseline could easily defeat the
epipolar geometry, thus, it is interesting to investigate ho-
mography based camera rotation tracking under the pure-
rotate assumption. To this end, we extend the classical image
stitching pipeline [3] with linear homography solver and
BA to camera rotation tracker followed by re-projection and
render steps as our method.

• Boujou [1]: Commercial camera tracking software Vicon
Boujou (version 5.0.2), which is famous for VFX in the past
decades.

3.3 Quantitative Comparison
We use two metrics for quantitative analysis and then show our
results:
Reprojection Error.We select 400 shots from our TV show dataset
and manually chose four features points which will be tracked over
all frames by KLT [29] as ground truth projections. Each feature is
be localized with less than 0.1 pixels bidirectional error in simulta-
neously tracking forwards and backward between two consecutive
frames to ensure the accuracy of the measurement.

In this experiment, we use DDfUSMC [8], Homo [1], Boujou [1]
and the proposed D-UCSMT to recover the camera motion and
reconstruct the 3D scene. The four selected ground truth features
are forced as input of them. To evaluate the camera tracking quality,
we reproject these four reconstructed 3D points back to each frame
and compute the root-mean-square error (RSME) between the four
reprojection and image measurements (ground truth). Note that
since Homo [1] does not reconstruct 3D scenes, thus we use recov-
ered homography matrices to transform the four features to the
rest frames instead.

Fig. 8 shows the RSMEs in each frame of 10 example shots con-
sists of 5 categories while the average RSMEs of each example shot
is reported in table. 1. We can observe that DDfUSMC [8], Homo [1]

1https://w.mgtv.com/
2https://github.com/hyowonha/DfUSMC
3https://github.com/ppwwyyxx/OpenPano



Table 1: Quantitative comparisons on 200 shots: the numbers show that RSME of reprojection error of 4 reconstructed 3D
points.

Interview Quick rotation Faster zooming Small translation Crowd Average (400 shots)#14 #330 #23 #67 #79 #237 #2 #9 #89 #318
DfUSMC [8] 122.6 121527.2 8.9 18.4 1.7 60.1 0.7 72.1 0.9 0.4 1263.0
Homo [3] 1.0 27.5 2395.0 2.4 2.5 1.3 3.2 2.8 1.1 67.2 136.2
Boujou [1] 22.6 1808.0 377.1 5.2 0.4 1.8 3.6 1.9 0.4 87.8 96.8
D-UCSMT 0.9 2.2 2.0 2.3 0.3 1.2 0.7 0.7 0.7 0.3 1.5
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Figure 8: Reprojection RSME (in pixels) on each frame of ten shots by DDfUSMC [8], Homo [1], Boujou [1] and the proposed
D-UCSMT.

and Boujou [1] achieve accurate tracking results in certain cate-
gories. For example, DfUSMC fails in interviews and faster zooming
scenes, while Homo and Boujou are unsuitable for handling quick
rotation and crowded scenes. In contrast, D-UCSMT provides stable
results in every category.

Finally, the average RSMEs over the 400 shots are computed
and reported in table. 1 show the D-UCSMT achieves significant
robust performance in TV show scenes against to DDfUSMC [8],
Homo [1] and Boujou [1].

Intersection Over Union (IOU). We select 50 shots from our TV
show dataset and manually label the minimum bounding boxes in
each frame of a certain real object. Besides, we design a 3D edge
skeleton for these real objects and augment the shots by projecting
them. If the camera motion is well tracked, the projected 3D edge
skeleton can perfectly fit the corresponding real object.

Thus, as shown in Fig. 9, we evaluate the performances based
on IOU between minimum bounding boxes of a real object and its
corresponding projected virtual edge skeleton. Table. 2 summarizes
the average IOUs of 5 examples shots (check the comparison videos
in supplemental material) and the average IOUs over 50 shots
which shows that D-UCSMT provides the most stable project virtual
object over DfUSMC [8], Homo [1], Boujou [1] under different
scenes.

（c）Boujou   IOU: 0.692

（a）DfUSMC   IOU: 0.389 （b）Homo   IOU: 0.937

（d）D-UCSMT   IOU: 0.969

Figure 9: An example frame from sequence ’poster’ aug-
mented by DfUSMC [8], Homo [1], Boujou [1] and the pro-
posed D-UCSMT. We use IOUs between the bonding box of
ground-truth object and projected virtual edge skeleton are
used to evaluate the performances.

3.4 Visual Comparisons
We surveyed 20 users to provide preferences for 550 augmented TV
show shots by DfUSMC [8], Homo [1], Boujou [1] and D-UCSMT
based on their visual perception. These augmented shots are dis-
played to the users in random order. The users are unaware of which
technique is used to produce the augmentation results. Fig. 10(a)
shows such an interface for the user study. Every result could be
assigned one of the four values (1-4), with 1 denoting the better
than the others.



Table 2: Quantitative comparisons on 50 shots: the numbers show that IOU between minimum bounding boxes of a real object
and its corresponding projected virtual edge skeleton.

#poster #box #makeup mirror #photo frame #sofa Average IOU (50 shots)
DfUSMC [8] 0.575 0.951 0.840 0.974 0.789 0.836
Homo [1] 0.948 0.952 0.947 0.972 0.944 0.923
Boujou [1] 0.763 0.955 0.943 0.971 0.941 0.906
D-UCSMT 0.950 0.954 0.962 0.981 0.964 0.969

(a) (b)

Figure 10: (a) Comparison interface for user surveyed. (b) User surveyed results by comparing our method on 550 shots with
three methods: DfUSMC [8], Homo [1] and Boujou [1].

Boujou

DfUSMC

Homo

D-UCSMT

Figure 11: Two examples of visual comparison. (left) Virtual rock man standing on the floor, but be rendered to fly up by
DfUSMC [8], Homo [1], Boujou [1] while be perfectly matched by D-UCSMT. (right) A virtual billboard is inserted on the desk
but be rendered with significant drift in the later frames by DfUSMC [8], Homo [1], Boujou [1] while D-UCSMT provides stable
projections.

Two examples of augmented shots in Fig. 11 show that the pro-
posed method enables virtual objects to insert and projection stably.
The statistic results in Fig. 10(b) on 550 shots demonstrates the
effectiveness and superiority to the state-of-the-art approaches
DfUSMC [8], Homo [1] and Boujou [1].

4 CONCLUSION
In this paper, we have introduced a practical solution that can track
uncalibrated cameras with small motion and reconstruct the 3D
scene accurately called D-UCSMT. It matches the TV show slotting
style, namely, faster zooming, small motion, and quick rotation
without intrinsic information (focal length). Thus, we can use the
proposed D-UCSMT to simultaneously reconstruct the sparse 3D

scene and compute camera poses and focal lengths of each frame by
giving an uncalibrated TV show shot as input. As a result, we can
further add the virtual objects (elements) into the reconstructed 3D
scene, then composite them back into the original shot while per-
fectly matched perspective and appear seamless. The evaluation of
a large variety of real TV show shots demonstrates the effectiveness
of our method in augmenting TV shows against state-of-the-art
works and commercial software products.
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